

alliance nationale pour les sciences de la vie et de la santé

« Développement de stratégies innovantes pour le traitement local du glioblastome »

Institut Thématique Multi-Organismes

Dr Emmanuel Garcion

Directeur de Recherche Inserm U1232, CRCINA, Université d'Angers, France

11^{ème} journée ITS – 2 & 3 octobre 2019 – Rennes – https://its.aviesan.fr

Centre régional de Recherche en Cancérologie et Immunologie Nantes - Angers

http://www.crcina.org

Equipe 17 du CRCINA : Design & Application de traitements Locaux Innovants dans le Glioblastome (GLIAD)

Deux situations cliniques GB 1) Exérèse chirurgicale => récurrence

2) La tumeur en place : non-réséquable

Idée d'un traitement local intraopératoire basé sur :

=> Une meilleure sélection de la cible

=> Un meilleur impact de la molécule thérapeutique en adéquation avec le système de délivrance (ou vecteur) et avec le mode d'administration

Traitement loco-régional

Survie <15 mois Dans tous les cas un pronostic dramatique!!!

Résistance/progression

Axe -1 – Innover en terme de Kadiotherapie vectorisée & « drug combinations » (nanocarriers moléculaires et particulaires)

delivery

Axe -2 – Développer des traitements locaux pour contrôler les décisions des cellules cancéreuses et les éliminer => piège à tumeur

Différentes approches cliniques utilisant les émetteurs alpha et beta (vectorisation moléculaire)

Approches ciblées (ligand-récepteur):

Radioimmunotherapy				
Epenetos <i>et al</i> . 1985, Brady <i>et al</i> . 1990, Li <i>et al</i> . 2010	¹²⁵ I-mAb-425 = anti-EGFR	recurrent grade IV glioma, Intravenous and intra-arterial injection, 925 to 4810 MBq, Combination with TMZ.		
Casaco <i>et al.</i> 2008, Torres <i>et al.</i> 2008	¹⁸⁸ Re- Nimotuzumab (h-R3) = anti-EGFR	phase I trial, recurrent high-grade glioma, intracavitary injection (Ommaya reservoir), unique injection of 3 mg of h-R3 labeled with 370-555 MBq of rhenium-188.		
Riva <i>et al.</i> 1994, 1997	¹³¹ I-BC-2 or BC-4 mAb = antitenascin	intralesional RIT as an adjuvant, intralesional RIT as an adjuvant.		
Riva et al. 1999, 2000	⁹⁰ Y- BC-4	Phase I/II study, intralesional (into tumor bed)		
Zalutsky et al 2008	²¹¹ At-ch81C6 (antitenascin)	Recurrent GBM, Rickham reservoir + catheter		
Hbeid et al. 2011	¹³¹ I-chTNT-1/B (histone H1)	Phase II study: high grade glioma, CED directly to the resection cavity.		
Radiopeptide therapy				
Heute et al. 2010	⁹⁰ Y-DOTATOC	Pilot study, Local injection: Rickham reservoir (4 mL)		
Cordier <i>et al.</i> 2010	²¹³ Bi-DOTAGA-SP	Prospective phase I study, 1-3 catheter system (intratumoral) stereotactically placed within the tumor margin		

Approches non-ciblées : nanoparticules & ciblage passif

Author	Radioisotope-Vector	Injection modalities, activity	
Radionanoparticles therapy			
Shultz et al. 2011	¹⁷⁷ Lu-DOTA-f-Gd3N@C80	U87MG-mice, CED: 18µL at 0,2µL/min.	
Vanpouille-Box et al. 2011	LNC ¹⁸⁸ Re-SSS	9L Fischer rats, CED: 10μ L at $0,5\mu$ L/min and 60μ L at $0,5\mu$ L/min.	
Phillips et al. 2012	^{99m} Tc-liposomes, ¹⁸⁶ Re- liposomes	U87MG-U251-athymic nude rat, Tc-CED: 50-100 μ L at 2 μ L/min (50 μ L = upper limit), Re-CED: 25 μ L at 2 μ L/min.	
Cikankowitz et al., 2017	LNC ¹⁸⁸ Re-SSS	Lab1 human GB in nude mice, CED: 3 and $5\mu L$ at $0,5\mu L/min$.	

Approches combinées (ligand-recepteur & nanoparticules)

Radionanoparticles therapy

Séhédic et al. 2017

CXCR4 mAb targeted LNC¹⁸⁸Re-SSS CXCR4 positive U87MG-SCID mice, CED: 10µL at 0,5µL/min.

La stratégie thérapeutique dépend de la nature de l'émetteur (α or β)

Radionuclide	Emission type	Half-life (h)	E _{max} (keV) of main emission	Maximum range in soft tissues (mm	
lodine-125	Auger	1426	3.19	Nanometer scale	
lodine-131	β-	193	606.3	2.9	
Yttrium-90	-90 β ⁻ 64 n-177 β ⁻ 162		2,280.1	12.0	
Lutetium-177			498.3	2.0	
Rhenium-186	β-	89.2	1,069.5	5.0	
Bhenium-188	β-	17	2,120.4	10.8	
Astatine-211	α	7.2	5.870 to 7.45	0.055 to 0.080	
Bismuth-213	α	0.76	8.4	0.1	
Actinium-225	α	240	8.4	0.1	
Frontiers in Pharmacolog	y www.frontiersin.org	Bailly	vet al 2019	July 2019 Volume 10 Article 772	

TABLE 1 Physical properties of radioisotopes used in glioblastoma therapy.

Nanoparticules chargées avec un émetteur β pour une thérapie à longue portée

Nanoparticules chargées avec un émetteur α pour une thérapie à courte portée (thérapie hautement ciblée ou confinée pour plus d'efficacité et s'affranchir des effets indésirables)

1 mm Lutetium-177 / **0.13 MeV**

GammaKnife

Nanocapsules lipidiques pour la radiothérapie interne vectorisée dans le glioblastome

Synthèse des complexes SSS et des nanocapsules de ¹⁸⁸Re

Remote-controlled Synchrom[®] module R&D Raytest[®] Software Gina Star[®] SynChrom[®]

¹⁸⁸Re-SSS-NCL

Voie intratumorale locale : Convection Enhanced Delivery (CED)

- μ cathéter, injection lente continue (pression positive) débit 5μL/min
- Distribution par convection plutôt que diffusion de la solution administrée (augmente le volume de distribution)

Neuro-Oncology 17(S2), ii3–ii8, 2015

- Contournement de la BHE
- Permet d'injecter des molécules de petit ou grand MW
- Thérapie ciblée autour du site d'insertion du cathéter, toxicité limitée
- Inflammation localisée à 50 μm autour de la tête du cathéter

Impact sur la distribution du 188Re et sur le gradient de dose

• Pas d'élimination rapide (bolus/CED) dans les urines des LNC¹⁸⁸Re-SSS

• Distribution locorégionale distincte des LNC¹⁸⁸Re-SSS entre bolus et CED LNC

• Présence du ¹⁸⁸Re à plus de 80% dans cerveau 96h après injection des LNC¹⁸⁸Re-SSS

Vanpouille-Box et al., Biomaterials, 32 (2011) 6781-6790.

Vanpouille-Box et al., Plos One, 6(3) (2011) e16926 : 1-10.

=> Possibilité de moduler le gradient de dose

Evaluation préclinique en orthotopique : efficacité après traitement à J12/J18

Irradiation externe

Vanpouille-Box et al., Biomaterials, 32 (2011) 6781-6790

1) Bénéfice clinique et effets locorégionaux

2) Ciblage de cellules disséminées au sein de smarges tumorales

Validation de la procédure d'infusion par CED chez le chien

- Experience approvée par le comité d'éthique
- Un chien expérimental (animal sain) sous anesthésie prolongée (suivie d'une éthanasie) – Cadre stéréotaxie breveté (ONIRIS-IUT Nantes)
- LNC délivrées avec succès au site déterminé et au taux d'infusion souhaité
- Biodistribution monitorée par imagerie SPECT montre une distribution intracrânienne sphérique at T0+1h et une très légère clearance à T0+24h.
- Pas de toxicité détectée.

- Modalités d'injection
 - Co-development avec Lemer-Pax company
- Procédé automatisé
 - GMP or GMP like development
- Procédures réglementaires
 - Agence Nationale de Sureté du Médicament (ANSM)
 - Comité de Protection des Personnes (CPP)
- Logistique
 - Injection stéréotaxique
 - Radiopharmaceutique

Données pharmaceutiques des ¹⁸⁸Re-LNC : DME

Etude BPL de toxicité réglementaire étendue chez le rongeur (CERB Baugy)

Nanocapsules en injection stéréotaxique par CED

Absence de toxicité significative

Application clinique

Appel à projets national en cancérologie 2019 Programme Hospitalier de Recherche Clinique en Cancérologie" PHRC-K 2019

Lettre d'intention / Letter of intent La lettre d'intention est à rédiger en anglais pour permettre l'évaluation internationale

Titre de l'étude envisagée, précédé par son acronyme¹

NANORAD.01:

Etude de phase I/II, ouverte, <u>unicentrique</u> pour déterminer la tolérance et la sécurité d'une radiothérapie <u>nanovectorisée</u> administrée par CED chez les patients souffrants de <u>glioblastome</u> récidivant.

Project title

NANORAD.01 :

Phase I/II, open label, unicentric study to assess tolerance and safety of a nanovectorized radiotherapy administered by CED in patients with relapsed/refractory glioblastoma.

GENERAL INFORMATION

÷			
	First name and name of coordinator	Dr. Franck LACOEUILLE	
	Specialty	Radiopharmacy/Nuclear medicine	
	Service ou département - Unit or department	Nuclear Medicine	
	Name and address of the hospital	CHU d'Angers 49933 Angers Cedex 9	
	Phone number	(33) 2 41 35 34 06	

Essai clinique de Phase I/II chez l'homme programme PHRC-K 2019

- Lettre d'intention (LI) acceptée
- Projets NANORAD.01 soumis le 10 septembre 2019!

Patients avec GBM IDH1 non muté non éligible à la chirurgie. <u>Phase 1:</u> Escalade de dose (par paliers 3+3). 4 niveaux d'activité administrés.

Phase 2: Une cohorte (n=9) injectée à la dose maximale tolérée

Investigateurs :

- Neurochirurgie : Dr. JM Lemée / Pr. Ph Menei
- Médecine Nucléaire : Dr. PJ Mention
- Radiologie : Dr. M Labriffe
- => « Première réalisation clinique d'équipe »

=> « Retour sur investissement : informations patients - échantillons »

- Ciblage , clairance, dosimétrie, mort des cellules tumorales
- Radiobiologie :

réponses tumorales intrinsèques

réponses micro-environnementales (i.e. GB « type » 🗇 macrophages 🗇 radio)

- Liens avec la génomique et les biobanques disponibles
- Alpha v/s beta, Drug combinations (cf. miRNA)

=> Rationnel sur thérapie alpha ²¹¹At locorégionale dans GB en amont d'un premier essai chez l'homme (First-in human)

CIBLE « gènes de fusion et chromotripsie » : de la caractérisation chez les patients à l'application

<u>Voie de signalisation</u>

<u>Essai clinique de phase I:</u> Erdafitinib

(Di Stefano, 2015)

- → Activité anti-tumorale
- \rightarrow Toxicité tolérable

Essai clinique de phase II : BGJ398

HORS des régions de CT

Validation de 3 gènes de fusion in

frame par RT-PCR puis séquençage Sanger

 75% des régions de CT renferment 	In frame	Out of frame	
des gènes de fusion	EGFR-SEPT14	EGFR-LANCL2	
	EGFR-SEPT14	EGFR-VOPP1	
20% des gènes de fusion détectés	EGFR-VSTM2A	VOPP1-TMEM5	
dans des régions de CT	EGFR-VSTM2A	CPM-PTPRR	
Validation de 18 gènes de fusion par RT-	EGFR-VOPP1	CPM-TSPAN31	
PCR puis séquençage Sanger	VOPP1-ABCA13	CPM-NUP107	
> 9 in frame	CPA6-CPM	MARS-NUP107	
9 out of frame	CPM-MDM2	FAM19A2-NUP107	
	ADGRL3-PDGFRA	METTL21B-PPM1H	
80% des gènes de fusion détectés	In frame		

PDGFRA-SCFD2

TMEM181-ROS1

BCR-BID

Les microARN non codants régulent l'expression des gènes au niveau posttranscriptionnel

=> Prévention=> Réparation=> Évasion / survie

Anthiya et al., MicroRNA-based drugs for brain tumors. Trends in Cancer, 4 (2) (2018) 37-53.

Drug combination / radiosensibilisation *in situ* (Marengo : miRNA-nanomedicine-glioblastome)

A. Tumorigenjçity & growth

B. Radioresistance (Effect of 188Re-loaded lipid nanocapsules)

Survival proportions: Survival of miR-C

Survival proportions: Survival of miR-22

-- NT

- LNC 188Re

MiR22 « oncogénique » réprime l'ADN déméthylase TET1 pour induire le silencing de suppresseurs de tumeurs dans cellules GB

Loussouarn et al. (submitted) - Analysis of miRNA networks in response to radiation treatment in GB reveals a oncogenic role for miR22 associated with TET1 DNA demethylase tumor suppressor repression

Screening d'agents de transfection versus certains de nos nanosystèmes

(Coll. P. BARIL, Orléans)

96 wells plate screening – Hela RILES cells/U87MG cells 50 nM mimics

Vectorisation locorégionale de RNAi (LPRi orthotopic GB)

validation in an orthotopic mice glioblastoma model.

=> Effet cytostatic en retardant la progression du cycle cellulaire en phase S

=> No cell cycle arrest => no apoptosis

=> miRNA 200c induce a reversible phenotype from the mesenchymal to the epithelial phenotype

T+3 jours	Not treated	CTL mimic	200c mimic	H20
E-Cadh			_	
ZEB 2		-		
ZEB 1		-		
VINENTIN	-		-	
GAPDH	-	-	-	

Evaluation fonctionnelle de miR-200c dans un modèle orthotopique de GB chez la souris

- AGO2 = AGO avec activité endonucléasique
- AGO2 dans fluides biologiques (milieu extracellulaire, sang, etc...)
- AGO2 dans vésicules extracellulaire (exosomes, MV)

Dépôts biointeractifs de type « piège à tumeur »

Concept de rupture

Cible : Cellules résistantes infiltrées dans le SNC

CXCR4/CXCR7-SDF1 axis

gradients, haptotaxie, trapping cellulaire & séquestration moléculaire / cavité /marges tumorales

Haji Mansor et al.,. Development of a non-toxic and non-denaturing formulation process for encapsulation of SDF-1 α into PLGA/PEG-PLGA nanoparticles to achieve sustained release. *Eur J Pharm Biopharm.*, 125 (2018) 38-50

Modèle de cavité de résection (synergie avec la radiothérapie) Pièges à tumeurs : guides polymères nanostructurés et micro-RCINA nano-implants bio-interactifs

For review, see Najberg et al., 2019, Frontiers in Pharmacology

EURONANOMEDIII / ERA-NET Soumis (LI + FULL + rebuttal phase)

Tumor traps for circulating tumor cells imitation of a premetastatic niche

M-Trap

Clinical trial on patients with stage IIIC ovarian cancer

Implants Polymères Fonctionnalisés pour le contrôle de la migration et le piégeage de cellules de glioblastome

Fig. 1. Transmission electron microscopy of SDF-1α-loaded nanoparticles. Scale bar: 100 nm.

Thèse M. Haji Mansor et al. 25 septembre 2019

1280 1860 ł 880 680 480 380 0 ista B. Jacob Native SDF-1© Encapsulated SDF-1©

Fig. 2. GBM cell migration assay showing similar bioactivity of native and encapsulated SDF-1α.

3. Fig. Transmission electron microscopy of chitosan nanofibres SDF-1αcontaining loaded nanoparticles.

Coll. C. Jérôme (Liège)

Piège à tumeur chimio-haptotactique à base d'éponges de fibroine de soie implantables dans les cavité d'exérèses

Thèse M. Najberg et al. *18 octobre 2019*

In vitro/In vivo evaluation Rat resection cavity model

- 1) Biocompatibility/biodegradability and fate ;
- 2) DF1 Biodistribution SDF-1;
- 3) Attraction of CXCR4+ cells ;
- 4) Survival

Coll. C. Alvarez-Lorenzo (Spain)

Indirect contact method: interaction between leachable products and cells

Fibroblasts : NIH/3T3 GB cells: U87MG

Moderate toxicity in the presence of SF+HA+Hep

SPRA * ADC Migration independent from proliferation

Dr.

NSC.

\$

• Resection cavity model and biopsy punch-based sponge implantation procedure

• Histology 8 days after implantation

acute inflammation zones

tissue/sponge

the interface tissue/sponge

Remerciements

Collaborations en France et internationales ٠

CRCINA Eq17 ٠

E. Garcion F. Boury O. Couturier F. Hindré F. Lacoeuille P. Menei C. Montéro-Menei S. Shahzad

Researchers - PL

A. Rousseau

Engineers and **Technicians**

- S. Avril
- **B.** Boisselier
- A. Clavreul
- L. Sindji
- C. Tétaud

Post-doc

N. Buchtova JM. Lemée

PhD Students D. Casas H. Grégoire M. Hagi-Mansor U. Khoe M. Najberg M. Riaud C. Toullec L. Roncali R. Molina A. Djoudi Past members C. Vanpouille-Box D. Séhédic N. Galopin

٠

- C. Loussouarn
- S. Anthiya

C. Roy

- H. Lajous
- B. Ramalapa

VR

alliance nationale pour les sciences de la vie et de la santé

Institut Thématique Multi-Organismes Technologies pour la santé

Gadolinium IRM

MERCI DE VOTRE ATTENTION !

11^{ème} journée ITS – 2 & 3 octobre 2019 – Rennes – https://its.aviesan.fr