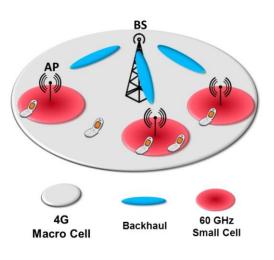

Evaluation d'exposition du vivant en ondes millimétriques dans les scénarios 5G

Centre national de la recherche scientifique

Nearly twofold increase in mobile traffic is expected by 2021

Cisco data traffic evolution forecast

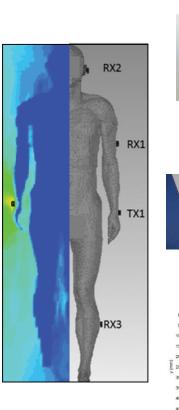

Shifting towards the millimeter-wave band

Advantages of the 60-GHz band

- ✓ 9 GHz of unlicensed bandwidth
- ✓ Very high data rates (up to 5-7 Gb/s)
- ✓ Reduced size of wireless devices
- ✓ High level of security and low interference with adjacent networks

IETR / WAVES TEAM / BIOMEDICAL ELECTROMAGNETICS

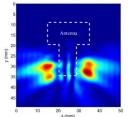
Dosimetry for 5G at mmW

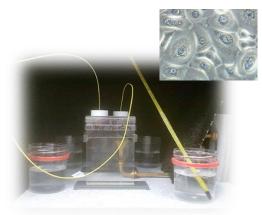


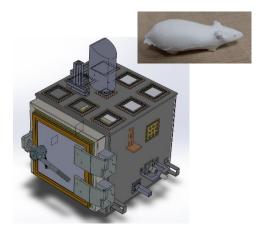
5G HetNet topology

Representative use cases

Body-centric wireless communications at mmW

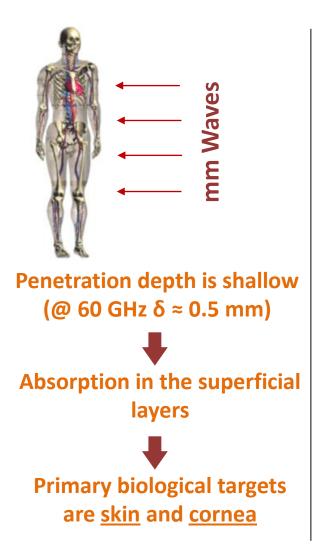



Body models


Dosimetry

Exposure systems for *in vitro* and *in vivo* studies

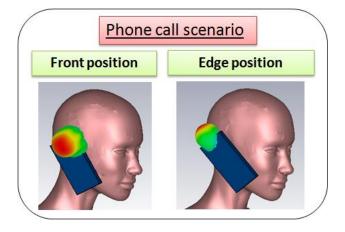
In vitro exposure at 60 GHz



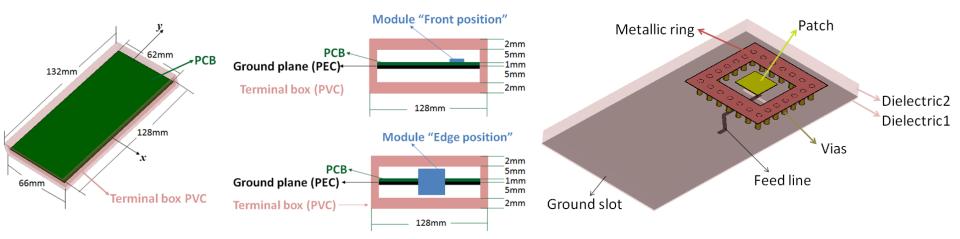
Reverberation chamber for *in vivo* exposure at mmW

DOSIMETRY FOR 5G AT MMW

Interaction of $\mathsf{M}\mathsf{M}\mathsf{W}$ with the human body

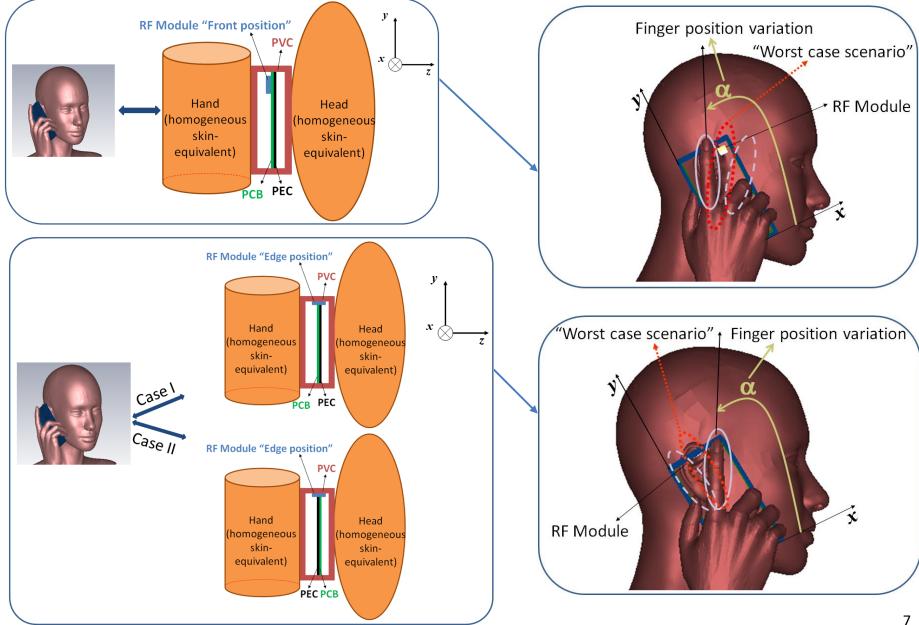


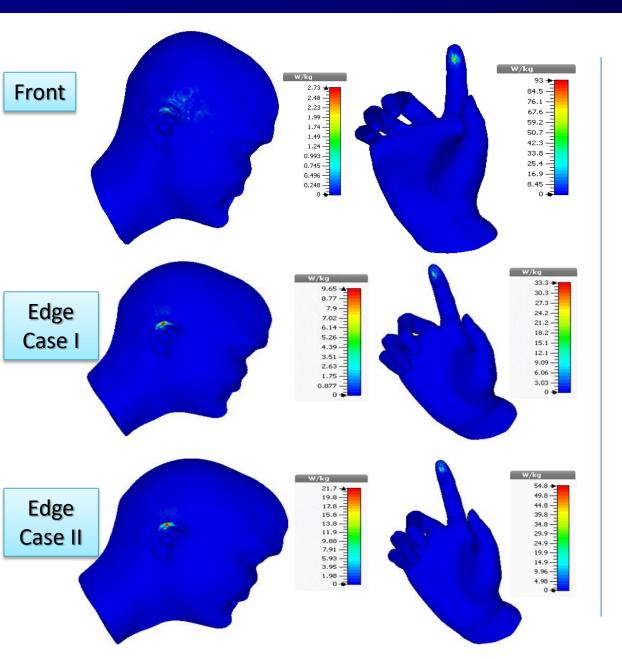
- At 60 GHz, normal incidence, the power transmission coefficient is around 60% (and it increases with frequency).
- Shallow penetration depth of mmWs in skin induces SAR levels significantly higher than those at microwaves for identical IPD values (e.g. 100 W/kg for IPD = 1 mW/cm²).
- Clothing impacts the absorption in the body (textile may increase the transmission, while an air gap between clothing and skin may reduce it).


M. Zhadobov, N. Chahat, R. Sauleau, C. Le Quement, Y. Le Dréan. Millimeter-wave interactions with the human body: state of knowledge and recent advances. *International Journal of Microwave and Wireless Technologies*, 3, pp. 237-247, 2011.

M. Zhadobov, C. Leduc, A. Guraliuc, N. Chahat, R. Sauleau. Antenna / human body interactions in the 60 GHz band: state of knowledge and recent advances. *State-of-the-Art in Body-Centric Wireless Communications and Associated Applications*, IET, 2016

Usage scenarios & Mobile user terminal





P = 10 mW

PHONE CALL SCENARIO

PHONE CALL SCENARIO – SAR

Maximum SAR occurs on the skin surface: user's ear and fingertips.

SAR locally distributed over a surface area of about 1 cm² on the hand and about 20 cm² on the head.

Metallic shield printed on the PCB towards the head increases the absorption in the hand.

Safety guidelines are set in terms of Incident Power Density (IPD)

	Fraguagay	Exposuro		Ave	raging		
	Frequency (GHz)	Exposure	IPD (mW/cm ²)	Surface	Time	Safety factor	
	(GH2)	type		(cm²)	(min)		
ICNIRP [1]		Occupational	5	20		Occupational	
	10.200	Occupational	100	1	CO/F 1 05		
	10-300	General	Conorral	1	20	68/ <i>f</i> ^{1.05}	
CENELEC [2])			20	1		s	
IEEE [3], [4]	30 - 300		10	100	2.524/f ^{0.47}		
	3 - 96	Occupational	200(f/3) ^{0.2}	1		¥ 75 5 67 10	
	> 96		400	1			
	30 - 100	General	1	100	25.24/f ^{0.47}	General	
			20	1			
<i>f</i> – frequency in GHz							

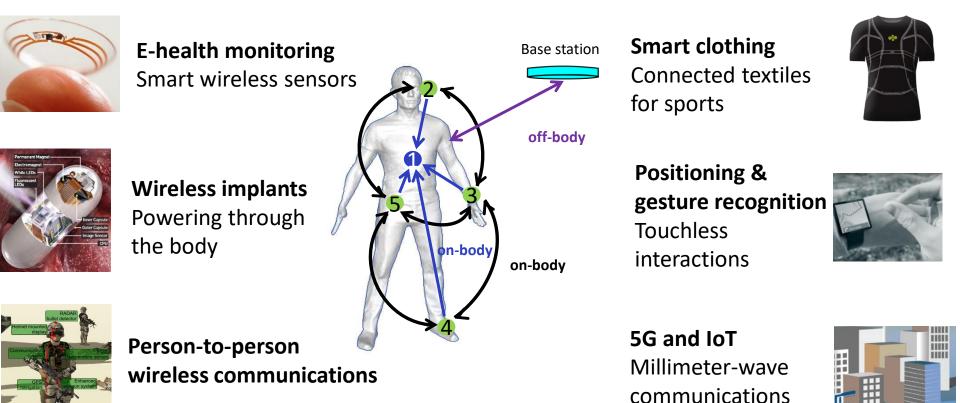
[1] ICNIRP: "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)", Health Phys., vol. 74, no. 4, pp. 494-522, 1998.
[2] EN 50413 – 2008, "Basic standard on measurement and calculation procedures for human exposure to electric, magnetic and electromagnetic fields (0 Hz – 300 GHz)".
[3] IEEE Standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, ISBN 0-7381-4835-0 SS95389, Apr. 2006.
[4] IEEE Standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, ISBN 978-0-7381-6207-2 STD96039, Feb. 2010.

Phone call scenario – Summary of results

$IPD_{eq}[W/m^{2}] = \frac{\rho\delta \cdot SAR(0)}{2 \cdot (1 - \Gamma ^{2})}$ (1 mW/cm ² over 20cm ² ; 20 mW/cm ² over 1 cm ²)									
Antenna	Absorption region	Absorbed power, mW	Peak SAR, W/kg	Peak IPD _{eq} , mW/cm ²	Averaging			TRP,	Total efficiency,
position					SAR, W/kg	IPD, mW/cm ²	Surface, cm ²	mW	%
	Head	0.3	2.7	0.1	2.7 × 10 ⁻³	0.1×10^{-3}	20	3.6 3	36
Front	Hand	4.1	93	3.9		0.1×10^{-1}	1		50
	Head (without the hand)	0.01	3.8x10 ⁻⁹	1.6x10 ⁻¹⁰				7.2	72
	Head	0.6	9.7	0.4	$0.9 imes 10^{-3}$	4×10^{-5}	20	3.1	31
Edge – Case I	Hand	5.3	33.3	1.4	$0.7 imes 10^{-3}$	3×10^{-5}	1		
	Head (without the hand)	0.07	5.4x10 ⁻⁸	2.4x10 ⁻⁹				7.8	78
	Head	0.9	21.7	0.9	1.6×10^{-3}	$7 imes 10^{-5}$	20	4.8	48
Edge – Case II	Hand	3.4	55	2.3	1.1×10^{-3}	$5 imes 10^{-5}$	1	4.0	40
	Head (without the hand)	0.4	1.3x10 ⁻⁷	0.6x10 ⁻⁸		\ /		7.3	73
				\sim					

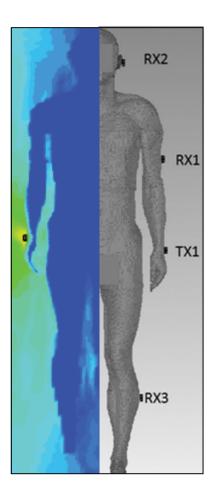
- Exposure levels are lower compared to the limits
- Presence of a hand increases the absorption in the head

 Edge position is an appropriate choice providing acceptable antenna performance and reduced use exposure.


✓ As far as the metallic shield printed on the PCB, both positions towards head or hand, can be chosen:

<u>PEC towards head</u> – lower exposure (IPD_{eq_head} = 0.4 mW/cm², IPD_{eq_hand} = 1.4 mW/cm²) lower antenna efficiency (31%)

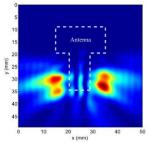
<u>PEC towards hand</u> – higher exposure (IPD_{eq_head} = 0.9 mW/cm², IPD_{eq_hand} = 2.3 mW/cm²) higher antenna efficiency (48%)


BODY-CENTRIC WIRELESS COMMUNICATIONS

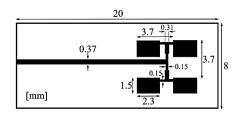
Wireless networking between **sensors and communicating devices** placed on, off, or implanted in human body *healthcare, sports, smart home, entertainment, military*

Small Cell

60-GHz band for body-centric applications


Antennas

Body models


Dosimetry

First mmW antennas for body-centric communications

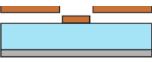
On the classical substrate

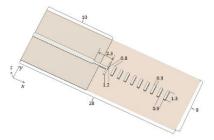
(127 or 254 μm RT Duroid 5880; ϵ_r =2.2; tan δ =0.003)

Antenna for off-body communications (broadside, 57-65 GHz, gain 12 dBi) N. Chahat, M. Zhadobov et al. IEEE AP, 60(12), 2012.

Textile antennas

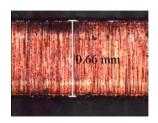
(200 μ m cotton; ϵ_r =1.5; tan δ = 0.016)


57-65 GHz, gain 8 dBi


N. Chahat, M. Zhadobov et al. IEEE AP, 61(4), 2013.

Textile antenna fabrication using laser ablations (ProtoLaser S)

Textile (ε_r, tanδ)



Antenna for on-body communications (end-fire, 55-65 GHz, gain 12 dBi)

A. Guraliuc, N. Chahat, C. Leduc, M. Zhadobov et al. Electronics, 60(12), 2012.

55-67 GHz, gain 11.9 dBi N. Chahat, M. Zhadobov et al. IEEE AWPL, 11, 2012.

Fabrication precision < 10 μm

ON-BODY MILLIMETER-WAVE ANTENNAS

Impact of the feeding type on SAR and ΔT

Four-patch antenna arrays at 60 GHz 3 1 (2)Excited by a micro-strip line, Sub, (0.127)with a ground SAR plane PERSONAL SECTION OF A 20 Mainteel 1 2770-04 Butteel 12770-04 Distance of the second 2 100% 8% **Absorbed power** 59% Aperture-coupled Sub₁ (0.127) array excited by a Strip microstrip line, Preg₁ (0.090) ΔΤ without a ground Sub₂ (0.127) plane Registerer Nith dense 1.140 Dave Softe Serry , Characterized & Jac Program March 3 • Local absorption \Rightarrow high SAR $\Rightarrow \Delta T$ Sub₁ (0.127) Preg₁ Aperture-coupled array, with a (0.090 Reduction of side lobes ground plane Sub₂ (0.127 Presence of a ground plane • Preg₂ (0.090 Sub, (0.381)

C. Leduc and M. Zhadobov. IEEE T-AP, 65(12), 2017.

TISSUE-EQUIVALENT MODELS

First semi-solid skin-equivalent phantom covering 55-65 GHz range

Composition

1. Deionized water (100g)

- 2. Agar (1.5g)
- 3. Polyethylene powder (20g)
- 4. TX-151 (2g)
- 5. Sodium azide (0.1g)

	٤ _r	σ (S/m)	R
Phantom	7.3	32.8	0.36
Skin	7.98	36.4	0.38

Applications

- On-body antenna measurements
- Dosimetry
- Body-centric **propagation** studies

Drawback of semi-solid phantoms Short life time due to evaporation

16

Is it possible to create a skin-equivalent phantom without water?

Complex permittivity of dry skin at 60 GHz is 7.98 – *j*10.9

Alternative solution

Solid phantom with the same power reflection coefficient R as that of skin

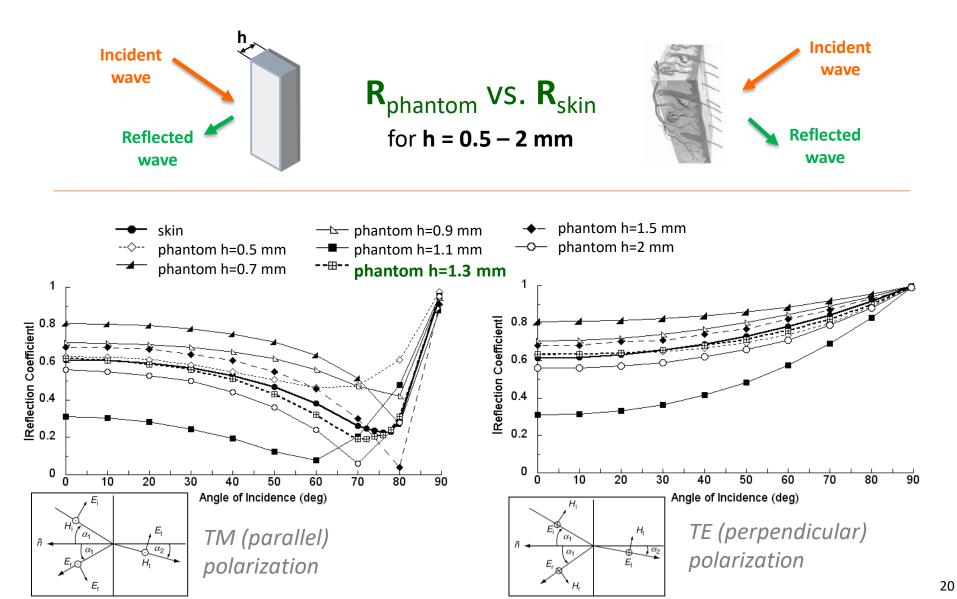
Composition

Carbon powder

PDMS

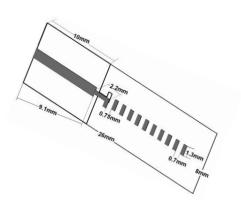
Fabrication

- 1. PDMS 10 (silicone gel) : 1 (curing agent)
- 2. Degas PDMS
- 3. Mix PDMS with Carbon powder
- 4. Degas dielectric composite (carbon-PDMS)
- 5. Dry dielectric composite
- 6. Deposit metallic backing

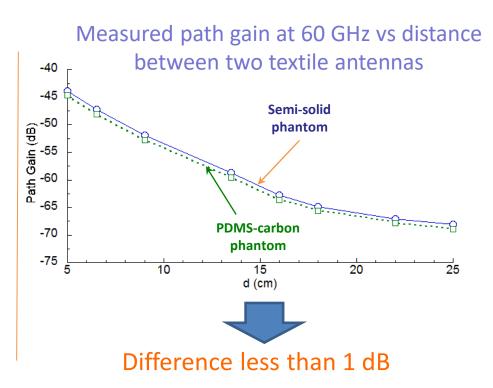


 ϵ_{skin}^{*} @ 60 GHz = 7.98 – j10.9

Measured permittivity of PDMS / carbon mixture

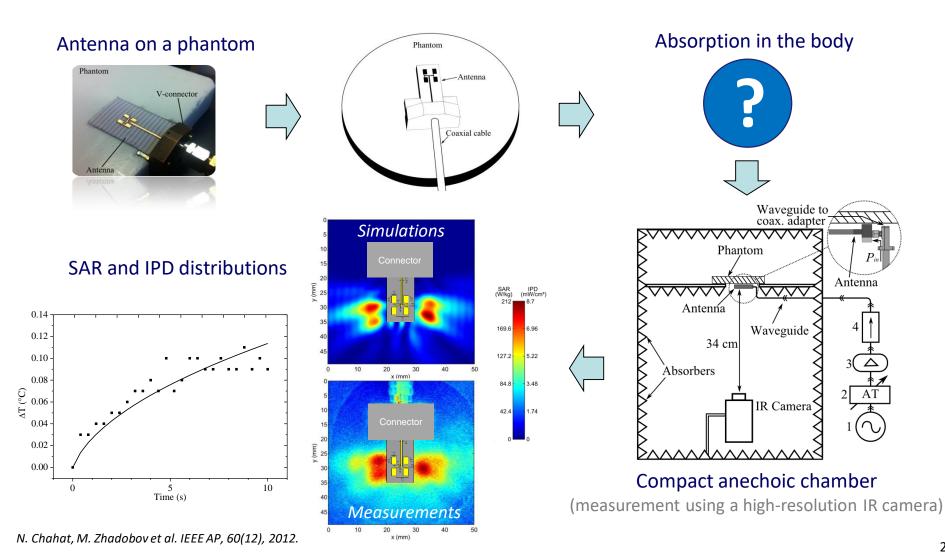


Computed R as a function of thickness


Propagation between two wearable Yagi-Uda antennas at 60 GHz

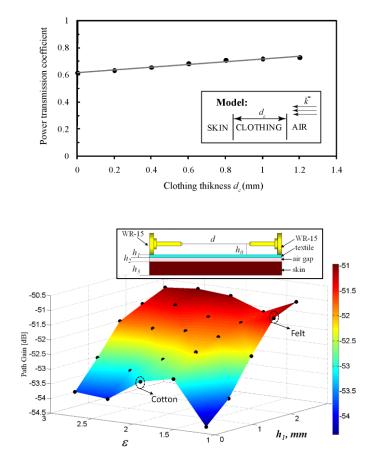
Yagi-Uda antenna design

N. Chahat, M. Zhadobov, et al. 60-GHz textile antenna array for bodycentric communications. *IEEE T-AP*, 61(4), pp. 1816 - 1824, 2013.

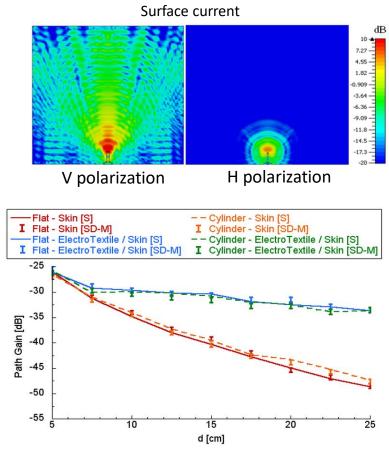


- Accurate representation of the skin reflection coef. (within 58-63 GHz range)
- Extended lifetime (years)
- Reduced quantity of material needed for fabrication and low profile ("surface" phantom)

Dosimetry method based on IR thermometry

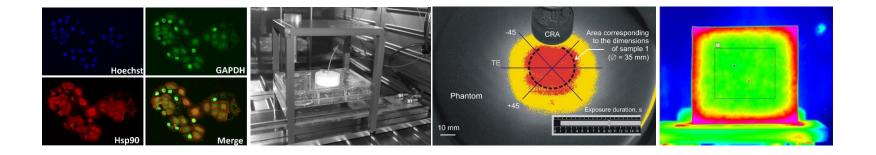

Determining $T(r,t) \Rightarrow SAR(r) \Rightarrow IPD_{eq}(r)$ in the near field

22

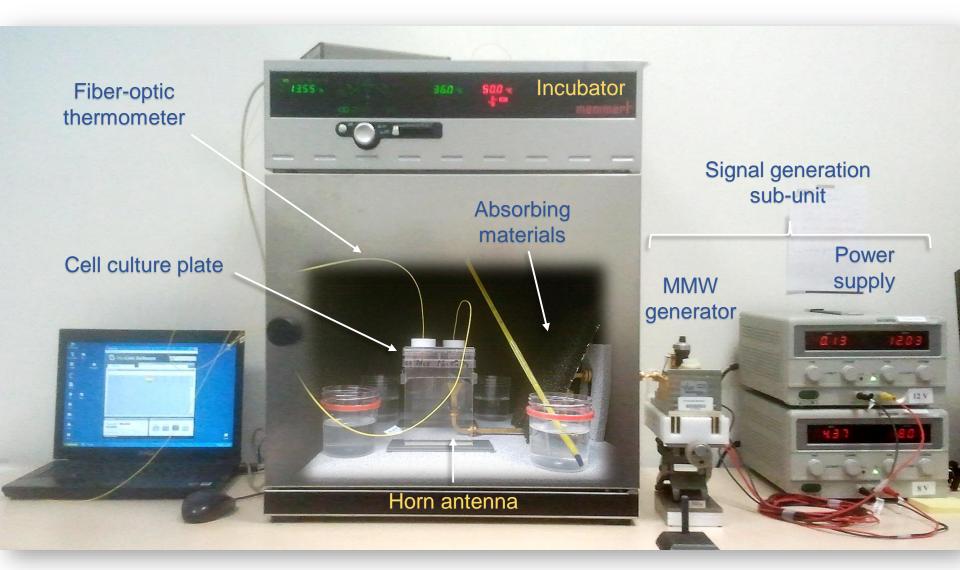

IMPACT OF TEXTILES

Regular textiles

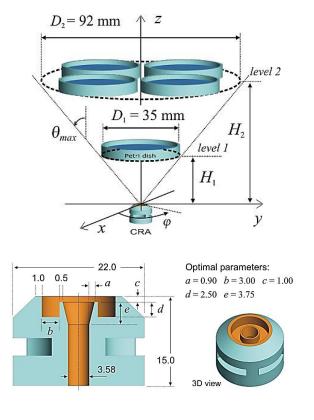
A. R. Guraliuc, M. Zhadobov et al. Effect of textile on the propagation along the body at 60 GHz. *IEEE T-AP*, 62(3), 2014.


Electro textile

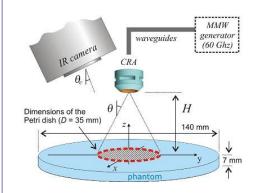
A. R. Guraliuc, M. Zhadobov et al. Enhancement of on-body propagation at 60 GHz using electro textiles. *IEEE AWPL*, 13, 2014.

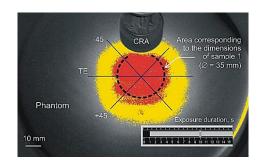

EXPOSURE SYSTEMS FOR IN VITRO AND IN VIVO STUDIES

Design and optimization of specific exposure systems equipped with dosimetric tools

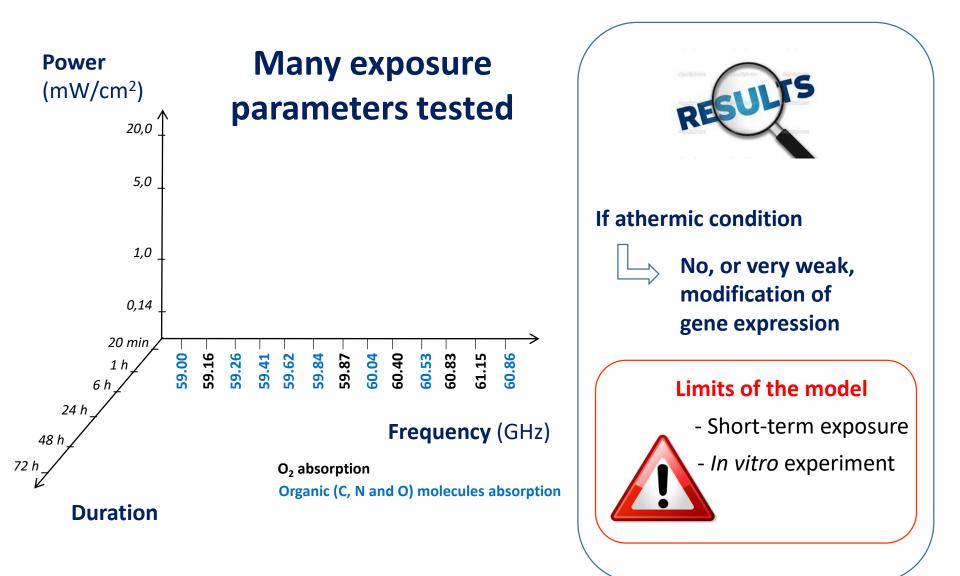

Challenges: control of the exposure parameters (*IPD, SAR, T in the near field*), optimization of the radiating structures and exposure systems, innovative dosimetric tools for reverberating environments

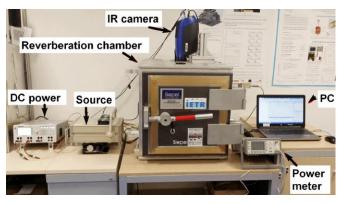
EXAMPLE OF EXPOSURE SYSTEM FOR IN VITRO STUDIES


A. Haas, Y. Le Page, M. Zhadobov, R. Sauleau, Y. Le Drean. *Neuroscience Letters*, 618, pp. 58 – 65, 2016.
A. Haas, Y. Le Page, M. Zhadobov, A. Boriskin, R. Sauleau, Y. Le Drean. *Bioelectromagnetics*, 37(7), pp. 444 – 454, 2016.
A. Haas, Y. Le Page, M. Zhadobov, R. Sauleau, Y. Le Dréan, C. Saligaut. *Journal of Radiation Research*, pp. 1 – 7, 2017.

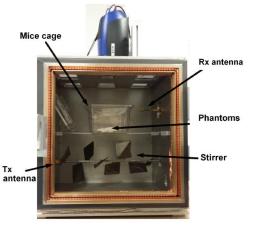

↗ uniformity and efficiency of exposure at 60 GHz

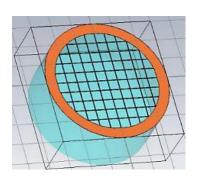
Considered exposure scenario and optimized choke ring antenna



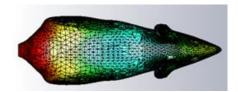

Experimental validation in the near field

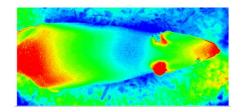
A.V. Boriskin, M. Zhadobov et al. IEEE MTT, 61(5), 2013.


In vitro cell culture	Genes involved in stress response specifically studied	High-throughput studies	
		Measurement of global DNA methylation and histone modifications	DNA
Can exposure interfere with cellular	Transfection of reporter genes		transcription
homeostasis ?	RT-PCR	DNA microarray	RNA
If yes:	rBiology jues		translation
Synthesis of factors allowing a rescue	Western-blot Immunocytofluorescence		Protein


Application to in vivo studies (isotropic exposure)

Reverberation chamber for *in vivo* exposure at mmW


Internal view of the chamber



Interface for dosimetry (transparent at IR and opaque at mmW)

Example of results obtained using IR camera and skinequivalent phantom

A. K. Fall, M. Zhadobov et al. Submitted to Bioelectromagnetics Journal (2019).

Thank you!

... new challenges for research