

alliance nationale pour les sciences de la vie et de la santé

Institut Thématique Multi-Organismes Technologies pour la santé

Statistical shape model of aneurysmal abdominal aorta

Claire Dupont¹, Christelle Boichon-Grivot², Adrien Kaladji¹, Antoine Lucas¹, Michel Rochette², Pascal Haigron¹

¹ Université de Rennes 1, CHU Rennes, INSERM, LTSI – UMR 1099, F-35000 Rennes, France ² ANSYS France, F-69100 Villeurbanne, France

Context & Objectives

Endovascular treatment

Introduction of medical devices through tortuous iliac arteries to reach the lesions (e.g. abdominal aortic aneurysm, aortic valve stenosis)

Need to optimize the endovascular treatment to avoid complications

Population with abdominal aortic aneurysm (AAA)

Analyze the population

Statistical Shape Modelling

- Allows to capture the morphological variability in a population
- Recently reported works:
 - Human nasal cavity (Keustermans et al, 2018)
 - Femur (Gaffney et al, 2019)
 - Healthy thoracic aorta (Wörz et al, 2015; Casciaro et al, 2013)

Objective:

Development of a Statistical Shape Model of aortoiliac anatomies with AAA

Method

Dataset

556 preoperative CT scans of patients suffering AAA

EndoSize®

CT scan

Before the bifurcation with the superfical artery

+ Anatomical Points

Centerline (CL)

Learning dataset = isotopological CLs

- Each branch of the CL is discretized with 80 points.
- A translation is applied so that P_{Bif} is at the center of the coordinate system (O, \vec{x} , \vec{y} , \vec{z}).
- A rotation of center O around \vec{z} -axis is applied so that P_{RI} is in the plane y = 0.
- \vec{z} -axis (patient craniocaudal axis) is unchanged
- For a patient i, the vector L_i represents the isotopological CL

Statistical Shape Model

Singular Value Decomposition

 $P = M S V^T$

- the columns of M are the left unit singular vector modes
- the columns *V* are the right unit singular vector

 \tilde{L}^* : approximated CL by r modes (r << m)

• S the diagonal matrix composed of the m singular values of P listed in descending order

Projection in the basis of modes: L*: New isotopological CL

Results

Modes

Mean CL given by the 1st mode

 $CL_{\text{mean}} = mean(\alpha_1) M_1$

Limits of the range of deformation induced by the mode *i*

$$CL_{\max}(i) = CL_{\mathrm{mean}} + \max(\alpha_i) M_i$$

 $CL_{\min}(i) = CL_{\mathrm{mean}} + \min(\alpha_i) M_i$

Mode 1 Mode 2

Mode 1 (Mean CL): iliac arteries slightly tortuous

- Mode 2: complex deformation of the iliac arteries and inclination of the abdominal aorta
- **Mode 3** influences the iliac tortuosity and the distance between P_{Rif} and the boundary points (P_R, P_{II}, P_{RI}) .

Accuracy

- ε_{in} : error due to the approximation with r modes obtained by projecting the CLs in the learning dataset considering a basis of *r* modes.
- $arepsilon_{out}$: error between the removed CL L_i approximated by $ilde{L}_i$ in the basis of r modes (leave-one-out approach)

To represent accurately a CL external to the learning dataset:

- A relatively high number of modes (50 modes) must be considered
- A large learning dataset is necessary

Conclusion & Perspectives

- Possible to accurately represent sick vascular structures
 - Take into account the radius variation along the CL
 - Understand shape variation in the pathological population

Contact: claire.dupont@univ-rennes1.fr

