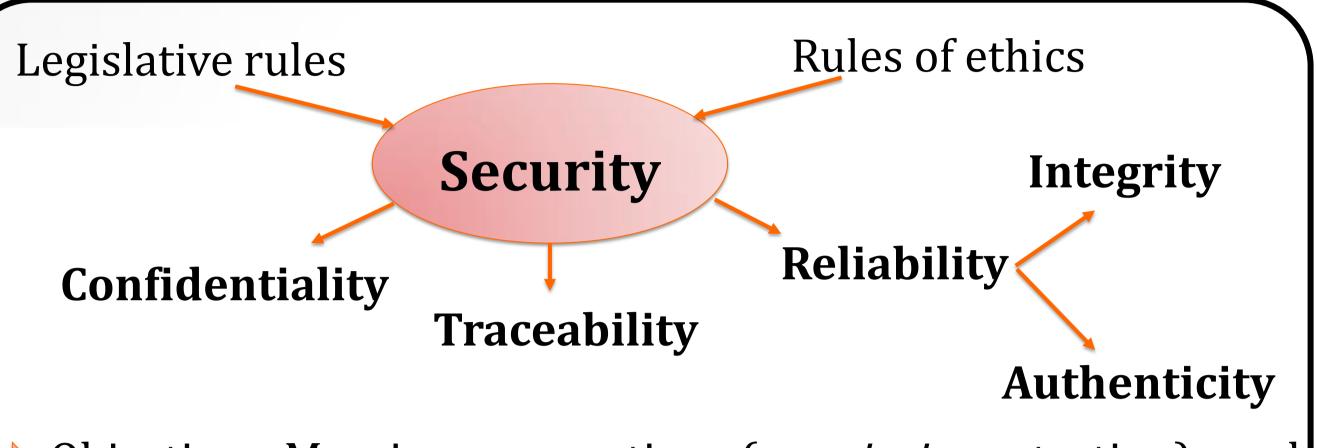


Institut Thématique Multi-Organismes Technologies pour la santé

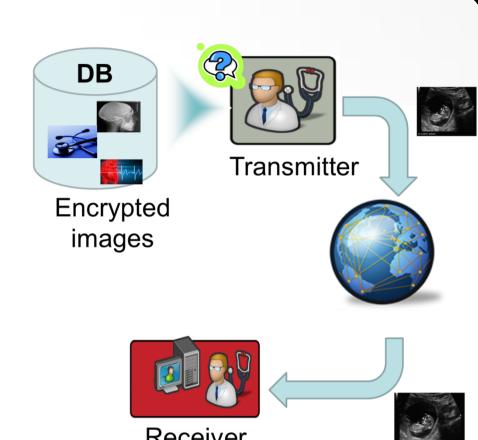
alliance nationale pour les sciences de la vie et de la santé


A New Joint Watermarking-Encryption-JPEG-LS Compression Method For A Priori & A Posteriori Image Protection

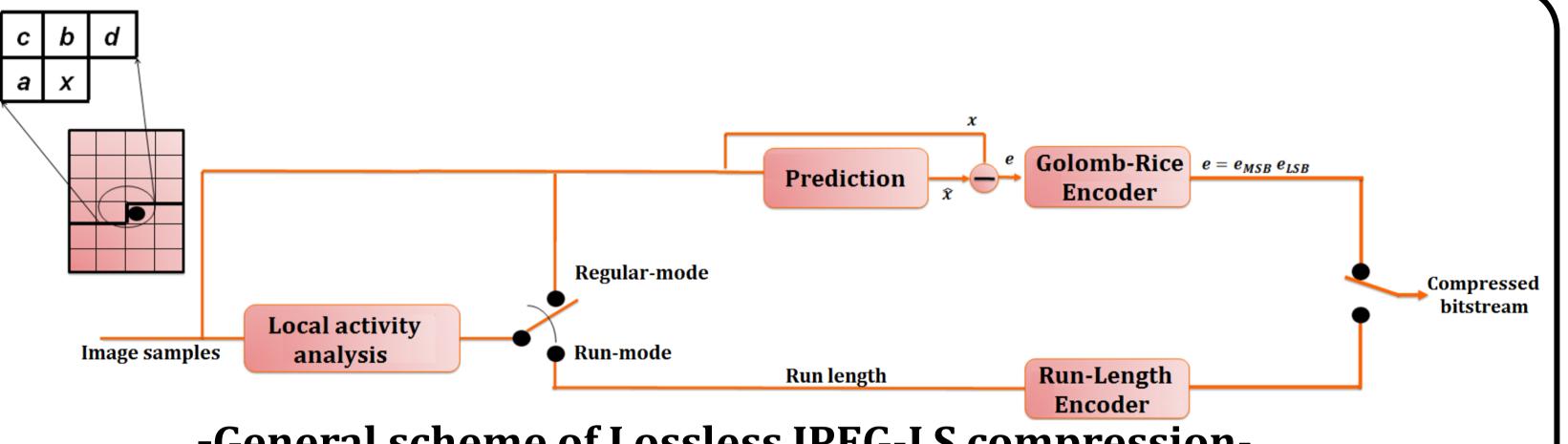
Sahar HADDAD^{1,2}, Gouenou COATRIEUX^{1,2}, Michel COZIC³

1. IMT Atlantique Bretagne-Pays de la Loire 2. LATIM INSERM U1101, Brest 29238, France 3. MEDECOM, Plougastel-Daoulas 29470, France

Objectives/Solution/Results: Trace medical images and verify their integrity or authenticity directly from the compressed bitstream.// The proposed scheme allows message insertion into the image, during the JPEG-LS encoding. // This scheme grants message extraction from the compressed bitstream.// Achieved capacities can provide different watermarking based security services.


1. Issues

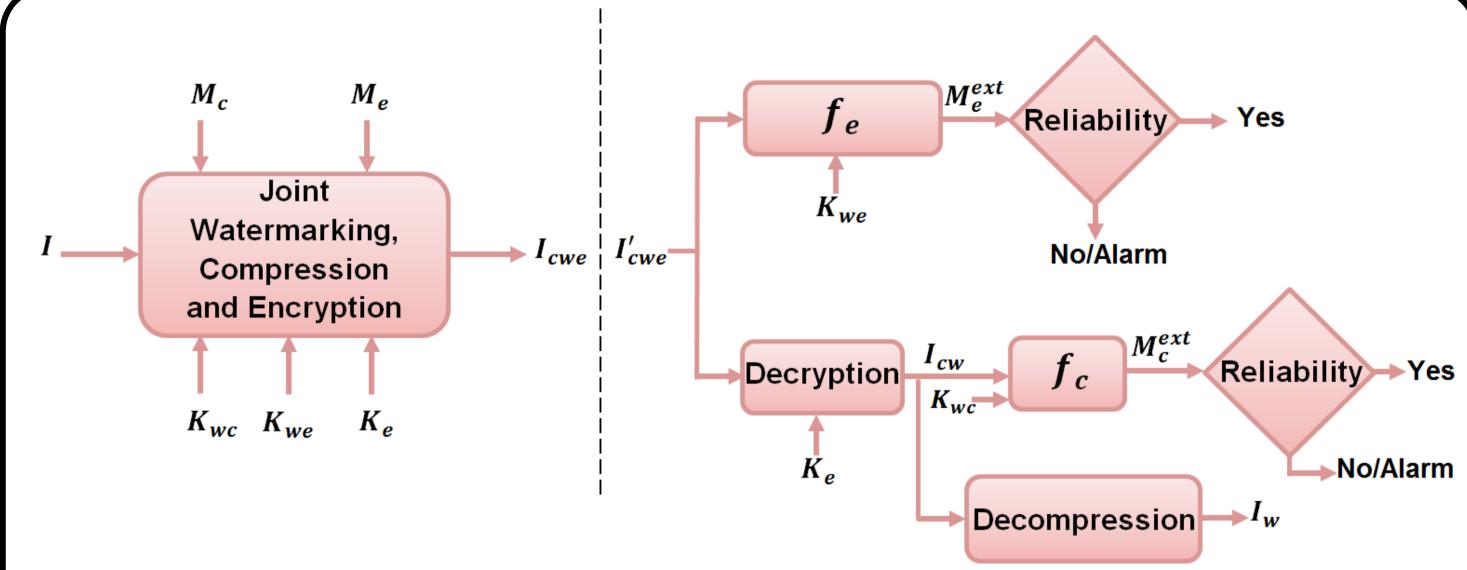
Dbjective: Merging encryption (*a priori* protection) and watermarking (*a posteriori* protection) into a single security mechanism.


Constraints

- Healthcare domain induces large volumes of medical images to protect.
- Needs for watermarking-based security services in both compressed and encrypted domains.
- → Watermark extraction directly from the compressed or/and the encrypted image bitstreams.
- → Interest for joint watermarking, encryption and compression.

2. JPEG-LS Compression

Z. JP LG-L3 Compression



- -General scheme of Lossless JPEG-LS compression-
- x: current encoding pixel of an image; $\{a,b,c,d\}$ the causal neighborhood of x.
- Based on the causal neighborhood of x, JPEG-LS works in 2 modes:
- 1) Run-mode (if a = b = c = d): Run length encoding (Encoding of the repetition number).
- 2) Regular-mode:
 - i) Prediction of x based on the values of $\{a,b,c\}$ Prediction error: $e=x-\hat{x}$.
 - ii) Golomb-Rice encoding of the prediction-error e using the context-dependent

factor
$$k$$
: $e = 'e_{MSB} e_{LSB}'$

Unary code of $\lfloor e/2^k \rfloor$ Binary code of $(e/2^k)$ reminder $e_{MSB} = '0X1'; X$: sequence of '0's represented on k bits

3. Joint Watermarking-Encryption-JPEG-LS Compression (JWEC)

-General architecture of the proposed JWEC system-

- I: original image,
- I_{cwe} : watermarked-encrypted-compressed image,
- I_{cw} : decrypted-watermarked-compressed image,
- I_w : decompressed-decrypted-watermarked image,
- K_{wc} and K_{we} are the watermarking keys used in the compressed and encrypted domains, respectively,
- M_c and M_e : messages embedded in compressed and encrypted domains, resp.
- M_c^{ext} and M_e^{ext} : messages extracted from compressed and encrypted domains, resp.

Compressed bitstream protection & verification

- $e = 'e_{MSB} e_{LSB}'$: Golomb-Rice coding of the prediction-error.
- If $e_{MSB} = '0X1'$ (reference sequence) $\Rightarrow e^{H}_{LSB} = b_{i}$; ($b_{i}: i^{th}$ bit of the message M_{c} ; e^{H}_{LSB} higher order bit of e_{LSB}).
- To extract M_c , the watermark reader just identifies the reference sequence '0X1' in the compressed bitstream and reads the immediate following bit.
- - \rightarrow The embedded message M_c corresponds to '01110'.

Encrypted-compressed bitstream protection & verification

- Encryption based on AES in CBC mode \rightarrow Compliant with the DICOM standard.
- In the block B_{ci}^{w} (i^{th} block of consecutive bits of the previous watermarked-compressed JPEG-LS bitstream), one bit of M_{e} is embedded such that:

$$f_e(B_{ci}^{we}, K_{we}) = f_e(AES(B_{ci}^{w}, K_e), K_{we}) = M_{ei}$$

where, f_e is the watermark extraction function in the encrypted domain, K_e is the AES-encryption key and K_{we} is the watermarking key.

4. Experimental results

- Image test set: 1200 8-bit Retina images and over 700 16-bit X-ray images.
- Performance criteria
 - Image distortion measure between the original image I and its watermarked decompressed-decrypted counterpart I_{wd}
- → Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM).
- Capacity rate in bpp (bits of message per image pixel).
- Original image Watermarked image •
- Obtained **PSNR** values are greater than 46 dB and 95 dB for retina and X-ray images, *resp*.
 - Resulting **SSIM** values are close to 1.
 - **Achieved capacities in the encrypted domain:** 0.03 bpp and 0.05 bpp for retina and X-ray images, respectively.
 - Achieved capacities in the compressed domain: 0.14 bpp and 0.18 bpp for retina and X-ray images, respectively.

5. Conclusion and future works

- The proposed joint watermarking-encryption-JPEG-LS scheme allows the access to watermarking-based security services directly from both encrypted and compressed domains.
- The proposed scheme guarantees an a priori as well as a posteriori image protection.
- The visual quality of the watermarked image is closed to its original version.
- Future works will focus on improving the robustness of the watermark to attacks (e.g. lossy image compression, additive noise,...), while preserving the image quality.