

alliance nationale pour les sciences de la vie et de la santé

Institut Thématique Multi-Organismes Technologies pour la santé

Model-based analysis of regional myocardial strains in the context of ischemic heart disease and intraventricular dyssynchrony

Laboratoire Traitement du Signal et de l'Image

Orlane Duport¹, Virginie Le Rolle¹, Elena Galli¹, David Danan¹, Karim El Houari¹, Arnaud Hubert¹, Erwan Donal¹, Afredo I. Hernández¹

Institut national de la santé et de la recherche médicale ¹ Université de Rennes 1, CHU Rennes, Inserm, LTSI – UMR 1099, F-35000 Rennes, France

orlane.duport@etudiant.univ-rennes1.fr

UNIVERSITÉ DE **RENNES**

Acknowledgment

French National Research Agency

MAESTRo).

(ANR) (ANR-16-CE19-008-01) (project

Background

Echocardiography is a clinical tool for diagnosis of heart diseases. **Strains signals** associated with **deformation** can be extracted.

Objective

Assess the feasibility of using a left ventricule model in order to **reproduce myocardial strains** in the case of

Strains signals can be **difficult to interpret** due to:

- multi-dimensionnality (several locations on myocarde)
- coupling between electrical, mechanical and hydraulic activities.

intraventricular dyssynchrony and lschemic Heart Disease (IHD).

Conclusion

- A close match is observed between minimum strains and strains morphology obtained from simulations and clinical data.
- Results show the model ability to simulate jointly the hemodynamic variables and myocardial strain curves during each phase of the cardiac cycle, in context of intraventricular dyssynchrony and IHD cases.

11^{ème} journées ITS – 2 & 3 octobre 2019 – Rennes – https://its.aviesan.fr