

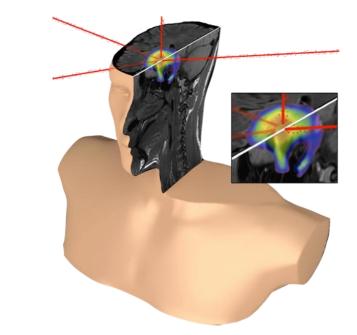
Institut Thématique Multi-Organismes Technologies pour la santé

AGulX Nanoparticules hybrides théranostiques, premier essai clinique phase 1b

Olivier TILLEMENT

Université Lyon 1

INSTITUT LUMIÈRE MATIÈRE NH TherAguix SAS



Institut Thématique Multi-Organismes Technologies pour la santé

Nanomedicine

AGUIX nanoparticles Activation and Guiding of Irradiation by X-Rays

Institut Thématique Multi-Organismes Technologies pour la santé

AGulX

polysiloxane and DOTA(Gd) high doping in gadolinium: $\sim 15 \text{ w}\%$

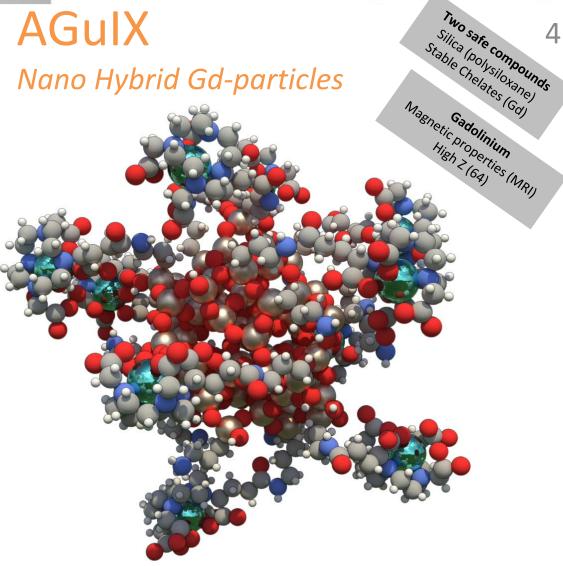
Size

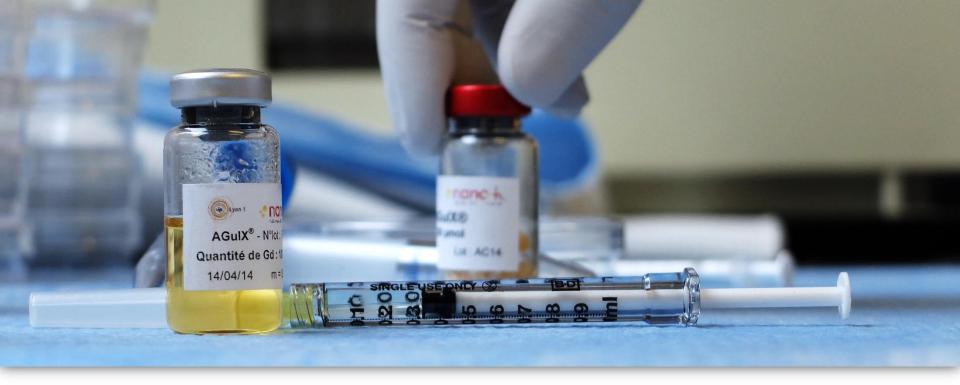
~ 3 nm Good monodispersity

Weight

~ 10 kDa

Conservation Freeze-Drying


Reconstitution Colloïdal solution (+) 100 g/l


Complexation constant of DOTAGA on the Np

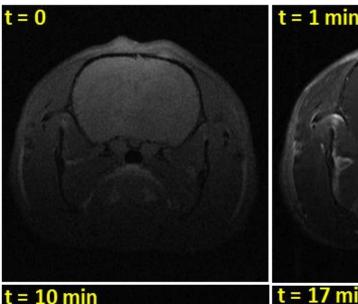
In β ~ 24.78

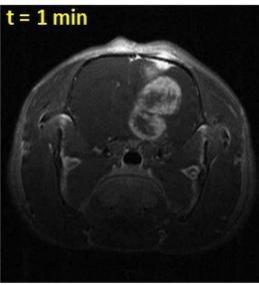
Relaxivity

MRI-T1 r_{1(Gd)} ~ 10 s⁻¹.mmol⁻¹ (60 MHz)

Theranostic nanoparticles Targeting – Imaging - Treatment

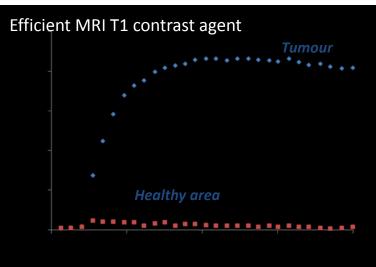
Institut Thématique Multi-Organismes Technologies pour la santé

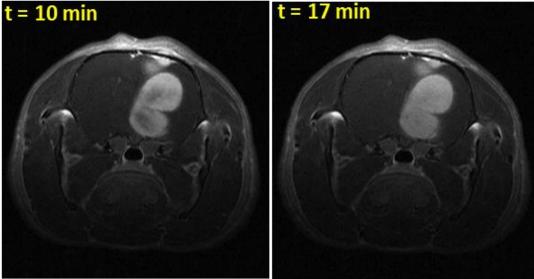

1 - Theranostic


Tumors targeting and Imaging

Intravenous injection of AGuIX to target (and see) all solid tumors

Preclinical results of Passive targeting after IV injection

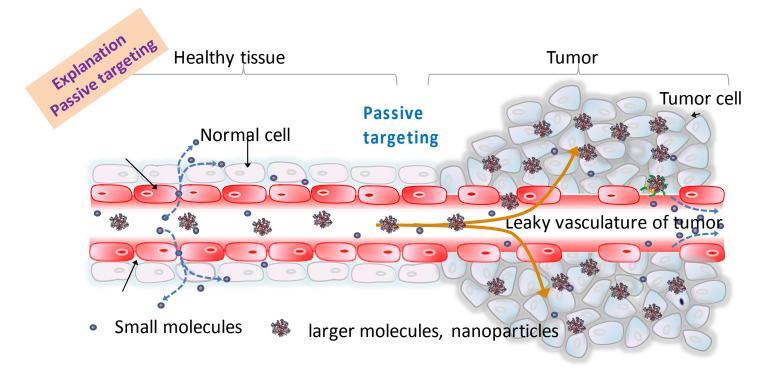

Orthotopic Gliosarcoma 9L Fisher Rat G. Le Duc team – ESRF – Grenoble



EPR effect

Leaky tumor - Passive diffusion

TUMOUR IMAGING MRI T1

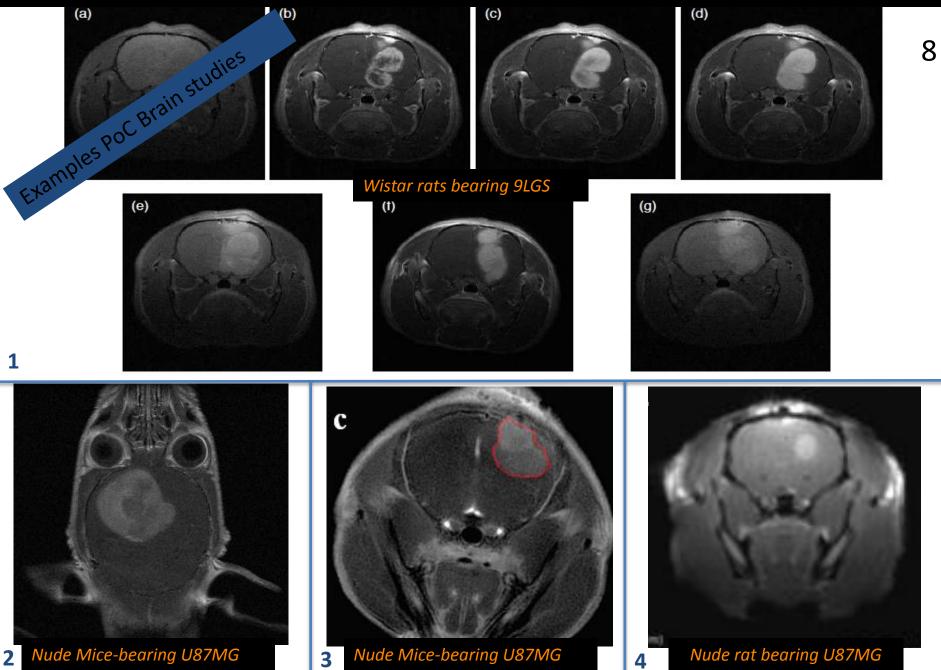


EPR PASSIVE DIFFUSION 6

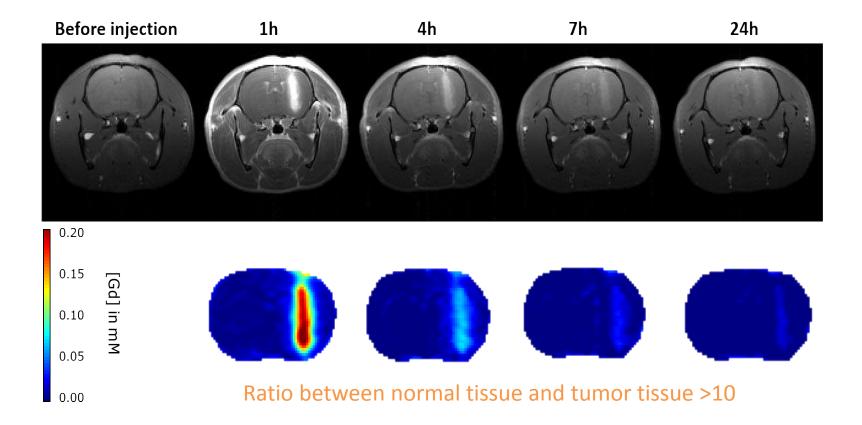
Target the tumours ? Nanomedicine & EPR Targeting

Tumour vessels contain large fenestrations between the endothelial cells

Well known passive targeting of the tumor by Enhanced Permeability Retention effect – 5 nm (EPR effect)



Diffusion in tumor - No extravasation in healthy area Selective distribution <1% ID but very specific and stable


Maeda et al, Microvasc, 2016 Maeda et al, J Controlled Release, 2000

Tumor vessels Small mole

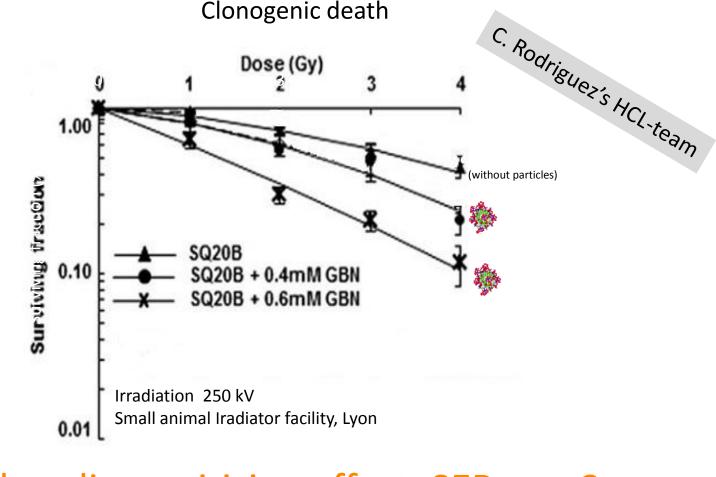
T1-weighted images of Glioma after Intra Venous AGuIX Injection

Tumour Specificity & Persistence in tumours tissues 24h after IV

Institut Thématique Multi-Organismes Technologies pour la santé

2 – <u>Theranostic</u>

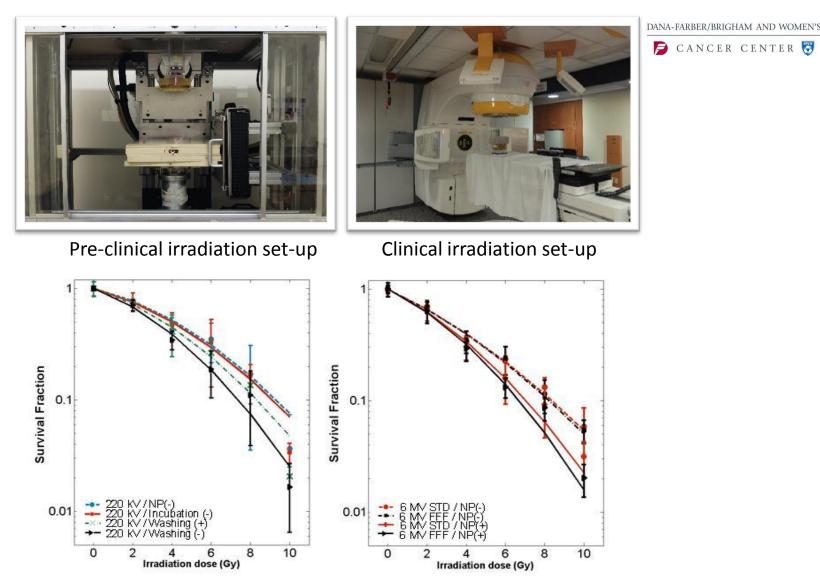
In Vivo and in Vitro preclinical Proof of Concept


Enhanced Radiation Therapy Booster of radiotherapy Efficient therapeutic effect

In Vitro Cell survival – Clonogenic assay

Nanoparticles Incubation & Irradiation

In Vitro SQ20B Radioresistant Head & Neck Carcinoma



High radiosensitizing effect: SER_{2Gy} ≈ 2

C. Rodriguez et al. J. of Nanomedicine 2014

MV and kV Radiation Dose-enhancing effects of AGuIX[®] Panc1 tumor Cells 200 kVp SARRP & 6 MV linear accelerator (Boston)

13

Alex Detappe et al., Cancer Nano 2015

In Vitro radiosensitizing experiments with AGuIX Teams 10 - Cells 20 - Radiations 10 Experimental conditions 50

Investigator (team, town)	Radiation/energy	Cell line	NP/incubation time	Biological effect		
K. Butterworth (personal		Prostate—DU145		1.17 < SF < 2.50		
communication) (Queen's	225 keV	Glioblastoma—T98G	From 0.1 to 5.0 mM ^d /1 h	SF = 1.25		
University, Belfast, UK)		Prostate—PC3		1.25 < SF < 1.33		
R. Berbeco ⁵⁸ (Harvard, Boston, MA)	220 kVp X-ray	Cervical carcinoma—HeLa	0.5 mM ^b /1 h	$SER_{4Gy} = 1.50$ DEF = 1.5		
		Head and neck squamous cell	0.4 mM ^a /1 h	$SF_2 = 0.60 \ \nu s \ 0.72$ (SER = 1.20)		
C. Rodriguez-Lafrasse ⁵⁷ (University Lyon, Lyon, France)	250 kV	carcinoma—SQ20B	0.6 mM ^a /1 h	$SF_2 = 0.35 \ \nu s \ 0.72$ (SER = 2.00)		
		SQ20B cancer stem cells	0.6 mM ^a /1 h	SF ₂ = 0.6 15 0.82 (SER = 1.40)		
C. Rodriguez-Lafrasse		Head and neck carcinoma—	0.4 mM ^a /1 h	$SF_2 = 0.61 \nu s 0.75$ (SER = 1.22)		
(University Lyon, Lyon, France) ⁵⁴	250 kV	SQ20B	0.6 mM ^a /1 h	$SF_2 = 0.37 \nu s 0.75$ (SER = 2.14)		
M. Dutreix (Institute Curie,			0.1 mM/1 h	γ -H ₂ AX + 80% ν s		
Paris, France) ⁵⁶	660 keV	Glioblastoma—U-87MG	0.5 mM/1 h	irradiation only		
R. Berbeco ⁵⁶ (Harvard, Boston, MA)	6 MV	Cervical carcinoma—HeLa	0.5 mM ^b /1 h	$SER_{4Gy} = 1.30$ DEF = 1.2		
M. Barberi-Heyob ⁵⁶ (CRAN, Nancy, France)	6 MV	Glioblastoma—U-87MG	From 0.01 to 0.50 mM ^b /24 h	SER from 1.10 to 1.50		
G. Blondiaux (CERI, Orléans, France)	Neutron cyclotron (Orléans, France)	Mouse lymphoma—EL4	From 0.05 to 0.30 mM	Estimated SER _{3Gy} > 2.00		
S. Lacombe ⁵⁹ (University of Paris-Sud, Orsay, France)	Ions He ²⁺ beam (Chiba, Japan)	Chinese hamster ovary carcinoma—CHO	1.0 mM/6 h	SER = 1,14		
S. Lacombe ⁵⁹ (University of Paris-Sud, Orsay, France)	C ⁶⁺ beam (200 MeV/uma) (Chiba, Japan)	Chinese hamster ovary carcinoma—CHO	1.0 mM/6 h	$SER_{4Gy} = 1.50$		
C. Rodriguez-Lafrasse ⁵⁷	C ⁶⁺ (33.6 keV µm ⁻¹) (Caen,	Head and neck carcinoma—	0.3 mM ^b /1 h	SER = 1.33		
(University Lyon, Lyon, France)	France)	SQ20B	$0.6 \mathrm{mM}^{a}/1\mathrm{h}$	SER = 1.59		

DEF, dose enhancement fraction; NP, nanoparticle; SER, sensitizing enhancement ratio; SF, survival fraction.

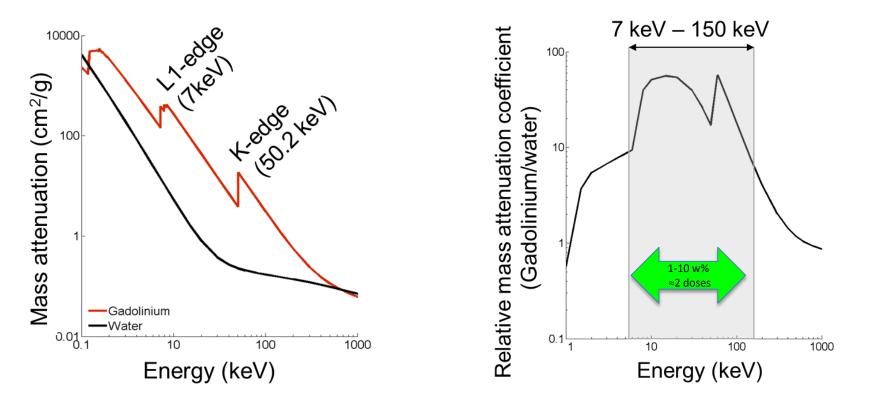
L. Sancey et al., Br. J. Radiol. 2014

p h

0

0

n

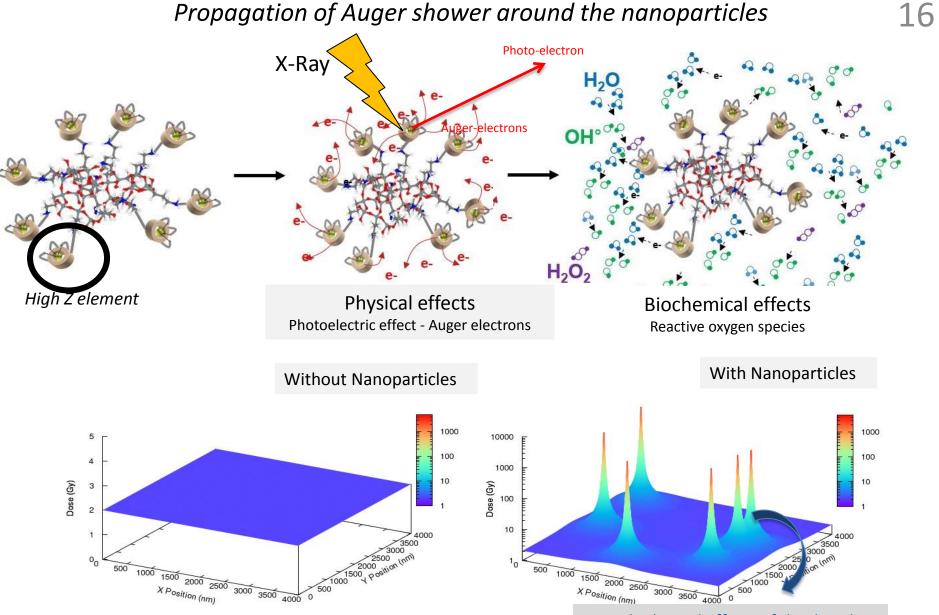

S

Clear evidences of radiosensitizing effects Sensiting Enhancement Ration: +20%

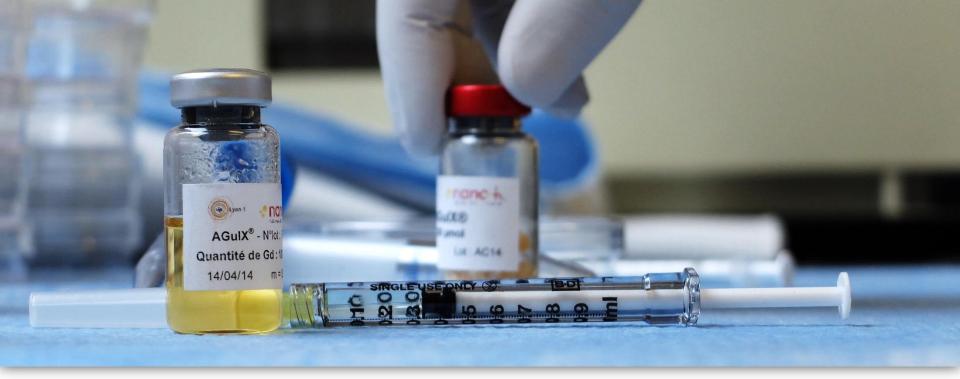
Why radiosensitizing effects ?

Simple dose increase ?

High Z element, Gadolinium: Z=64


Possible dose effect (Z³⁻⁵)...

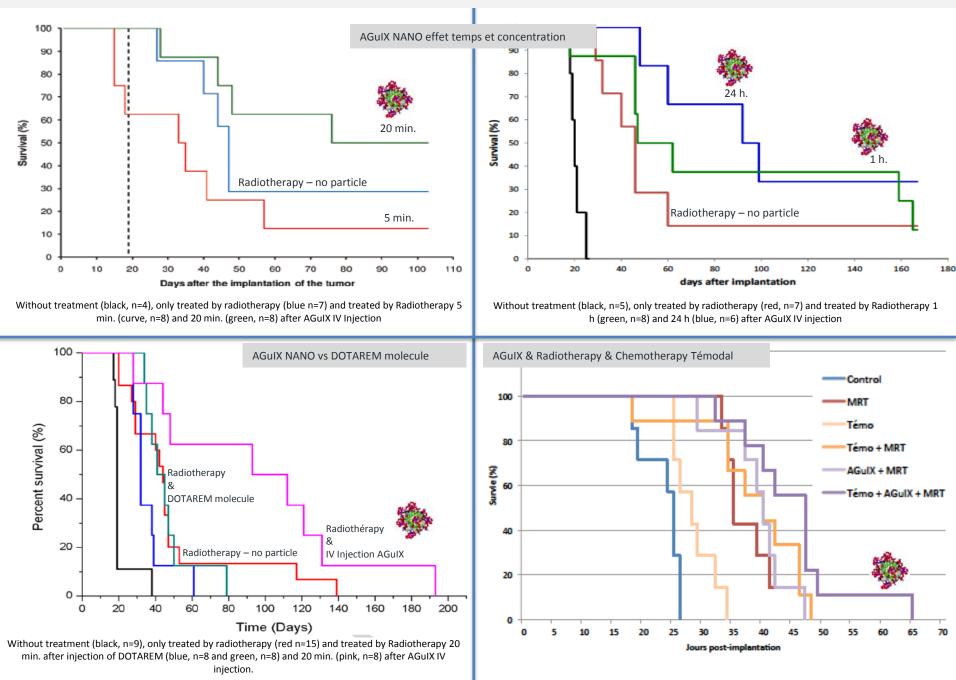
Anyway only at high Gd-content (0.001 w% ?)... and nothing in the MeV range!


Local Nano-Dose effects

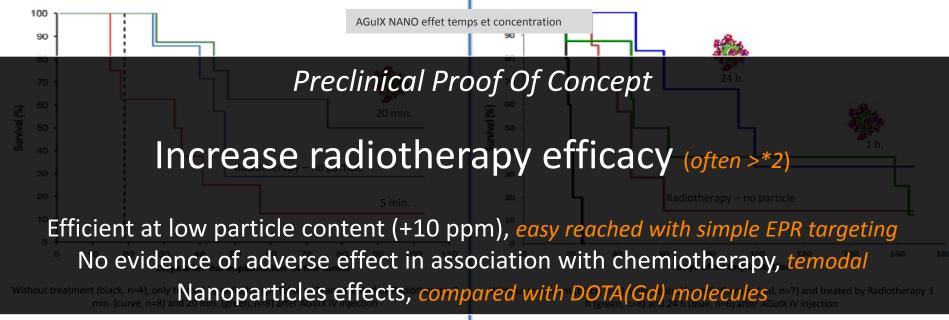
Propagation of Auger shower around the nanoparticles

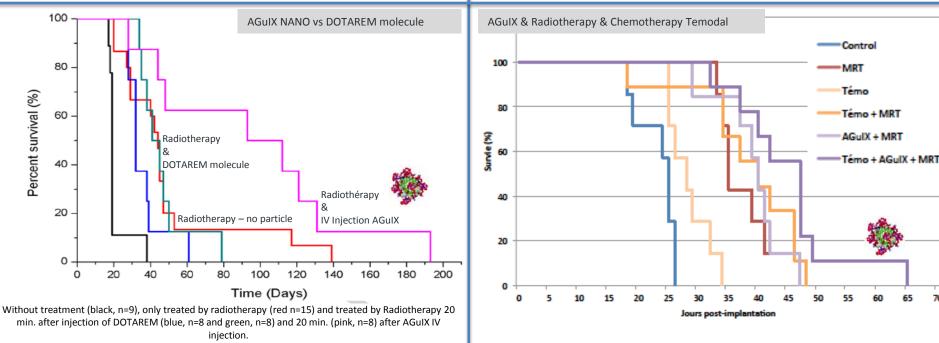
Simulations – Stephen McMahon

More biological effects of the dose !

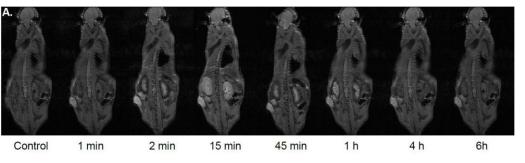


In Vivo


Preclinical animal radiosensitizing studies

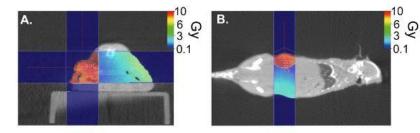

Intravenous Injection (0.1-1 % ID/g) & Irradiation

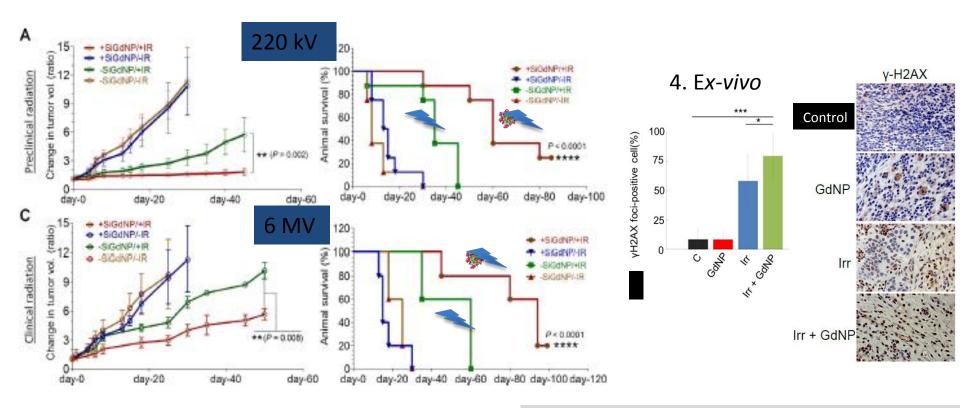
Survival curves of orthotopic gliosarcoma bearing rats (9LGS)


Survival curves of orthotopic gliosarcoma bearing rats (9LGS)

Proof of Concept for MRI-Guided radiosensitization in Pancreas adenocarcinoma

1. MRI - Biodistribution


3. Therapeutical effect (10 Gy)

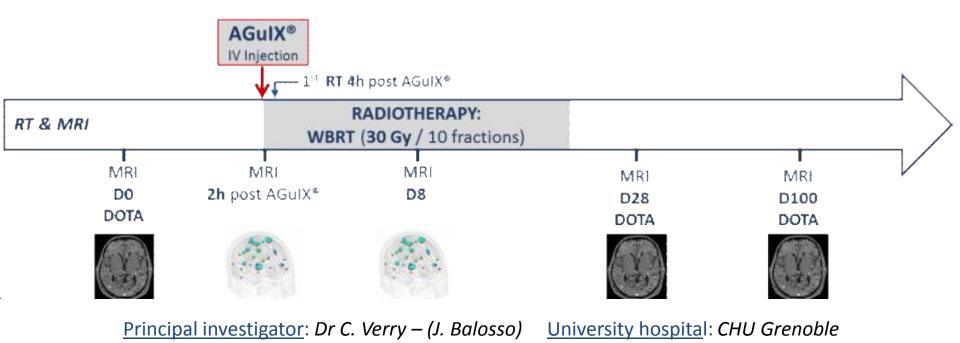

DANA-FARBER/BRIGHAM AND WOMEN'S

2. Dosimetry

Preclinical PoCs

Positive results in 12 different kinds of cancers

Conner		Animal	studies					
Cancer	In vitro	Imaging	Therapy	Clinical trial				
Glioblastoma	✓ F98, U87, T98G	✓ MRI – PET - SPECT	\checkmark	BI preparation NANOGLIO (IGR, Guillaume Louvel, MD)				
Brain metastases	✓ B16F10	✓ MRI	\checkmark	NANORAD - Phase I in progress (CHU Grenoble, Camille Verry, MD)				
Cervical cancer	✓ HeLa	NE	NE	V NANOCOL - Authorization ANSM (IGR, Cyrus Chargari, MD)				
Lung cancer	✓ A549	MRI - Fluo	\checkmark	NE Discussion and development device with Vectura				
Prostate cancer	✓ DU145, PC3	X (post IT)	NE	NE Discussions Queen's university Belfast (Suneil Jain, MD)				
Head and neck cancer	✓ SQ20B, FaDu, CAL33	✓ Fluo (post IT)	\checkmark	FUI Project submitted Discussions CHU Lyon (Philippe Ceruse, MD)				
Pancreatic cancer	✓ Capan-1	MRI - SPECT	\checkmark	NE				
Chondrosarcoma	✓ SW1353	✓ SPECT	\checkmark	NE				
Liver HCC	✓ HepG2	MRI – PET	\checkmark	NE				
Melanoma	✓ B16F10	✓ SPECT	\checkmark	NE				
Breast cancer	NE	MRI - PET	NE	NE				
Colorectal cancer	✓ HCT116	✓ MRI	NE	NE				



3 – First In Man

Phase 1b – NANORAD Radiosensitization of

multiple brain metastases using Gadolinium based Nanoparticles (AGuIX)

The « First in Man » injection July 2016

CHU GRENOBLE ALPES TherAguix

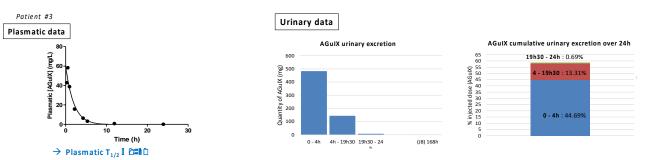
Pharmaceutical form: sterile lyophilized powder

Reconstitution with water for injection 1 hour before injection Concentration 100 g/L

Intravenous injection Syringe pump - injection rate: 1 mL / min Duration of injection: 15 min / first dose → 90 min / last dose

SAFETY & PK results

Good tolerance of the 4 first dose levels (12p/15p)

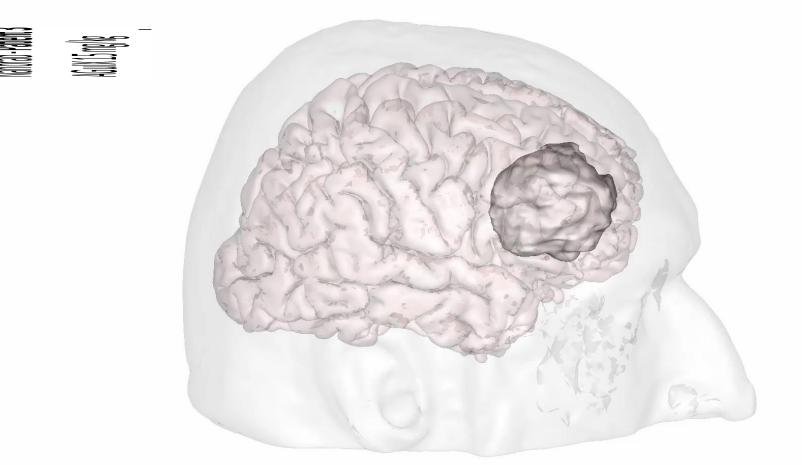

$MTD \ge 75 mg/kg$

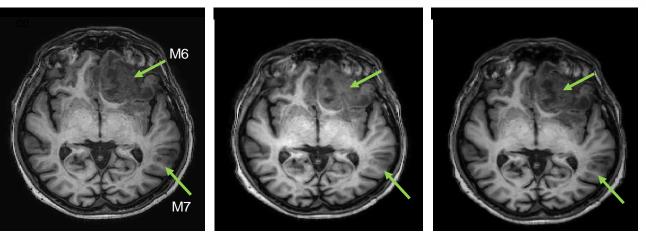
NANORAD Phase 1b		15 mg AGulX®/kg			30 mg AGulX®/kg			50 mg AGuIX [®] /kg			75 mg AGulX [®] /kg		
Results August 2017 AGuIX® IV (15 to 100 mg/kg) + WBRT (10*3 Gy)		patient #1	patient #2	patient #3	patient #4	patient #5	patient #6	patient #7	patient #8	patient #9	patient #10	patient #11	patient #12
		NSCLC	Melanoma	NSCLC	NSCLC	Melanoma	Melanoma	Melanoma	NSCLC	Colon cancer	Melanoma	Melanoma	Breast cancer
	Age (Years)	70	64	60	79	37	60	39	69	68	73	53	64
	Number of evaluable brain metastases	5	30	8	4	65	24	12	13	4	31	64	19
Patient Description	DS-GPA score	0	0	1	0	0,5	0	0,5	2	0	0,5	1	2,5
ļ [Extra-Cranial metastases	yes	yes	yes	yes	yes	yes	no	yes	yes	yes	no	yes
Cofety and Televance	Complication at injection site	No	No	No	No	No	No	No	No	No	No	No	No
Safety and Tolerance	Impact on Systemic response	No	No	No	No	No	No	No	No	No	No	No	No
Pharmacokinetic	Plasma half time	2h00	0h45	1h20	0h50	1h18	0h57	0h56	1h06	0h48	1h10	0h56	0h58
Pharmacokinetic	Urinary excretion during firt day (%)	45%	45%	55%	48%	NE	49%	70%	50%	50%	NE	88%	56%

Safe compound: MTD > 75 mg/kg - No grade 1/2/3 adverse event related to AGuIX[®]

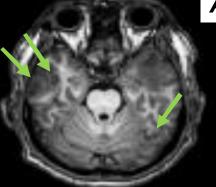
Pharmacokinetic results

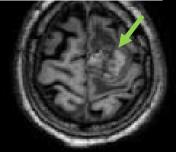
Short half life $T_{1/2}$: 1-2 h


Urinary excretion 50% first Day

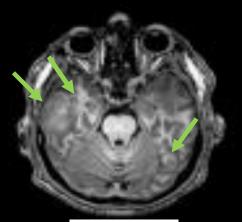


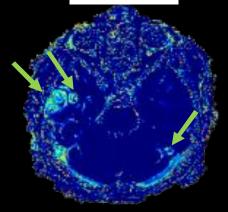
Tumour AGulX targeting & MRI

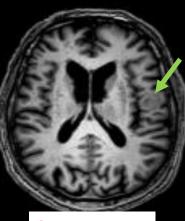

AGulX[®] specific uptake in metastases: proofs of tumor targeting with MR imaging

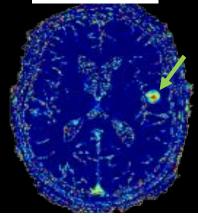


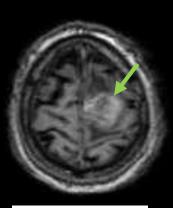
- AGuIX Uptake in tumours after nano-Drug IV injection
- MRI Enhancements of the metastases
- Some Persistence +1 week
 27
 S. Mériaux *et al.* Neurospin

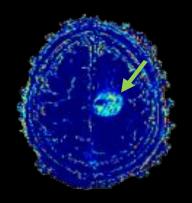




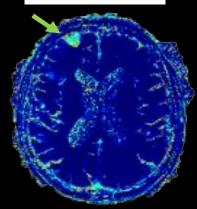




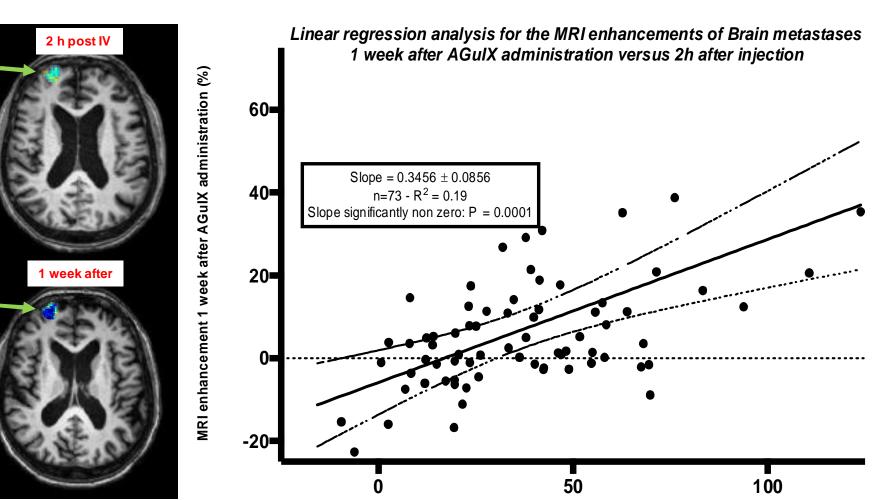

Melanoma patient #7



Lung cancer patient #8



Colon Cancer patient #9



Breast Cancer patient #12

Evidenced by MRI, up to 30% of the targeted dose is maintained in the tumor after 1 week AGuIX[®] persistence in tumors

Particles are present in the metastases and can interact with ionizing radiation for several days after intravenous administration

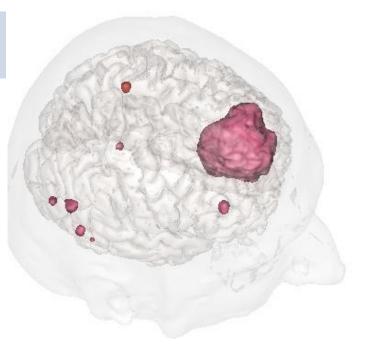
MRI enhancement 2 hours after AGuIX administration (%)

Good radiation sensitizers must be specific to tumor cells to maximize effects on the tumor and reduce damage to normal healthy cells. MRI confirms preferential uptake of AGul X[®] nanoparticles in BM compared to normal brain tissue, and its ability to selectively accumulate in tumor tissue while sparing normal tissue.

Tumour responses

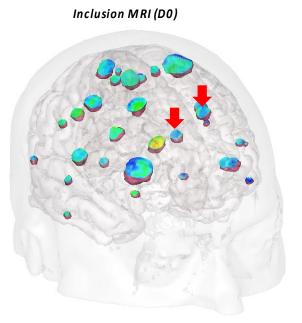
Clinical responses: first evidences of AGuIX[®] therapeutic effects

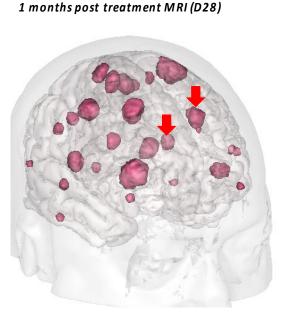
NH TherAguix – All rights reserved


Clinical benefits in +90% patients (10p/11p)

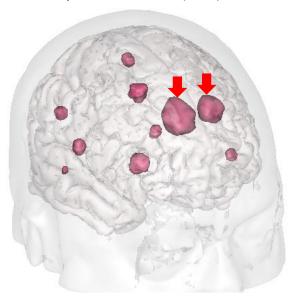
NANORAD Phase 1b		15 mg AGulX [®] /kg		30 mg AGulX®/kg			50 mg AGuIX®/kg			75 mg AGulX®/kg			
Results August 2017 AGuIX® IV (15 to 100 mg/kg) + WBRT (10*3 Gy)		patient #1	patient #2	patient #3	patient #4	patient #5	patient #6	patient #7	patient #8	patient #9	patient #10	patient #11	patient #12
		NSCLC	Melanoma	NSCLC	NSCLC	Melanoma	Melanoma	Melanoma	NSCLC	Colon cancer	Melanoma	Melanoma	Breast cancer
	Sum of the longuest diameter at D0	12.0 mm	40.9 mm	60.5 mm	25.9 mm	36.5 mm	26.5 mm	56.1 mm	43.9 mm	58.5 mm	31.6 mm	23.5 mm	27.5 mm
Evolution of Target Lesions	Shrinkage at D28 (%)	-25%	-1%	-26%	1	46%	13%	-6%	-3%	-17%	-8%	-8%	-22%
	Shrinkage at D100 (%)	1	-67%	-33%	1	1	1	NE	NE	-28%	1	in progress	in progress
Best Obje	Best Objective CNS Response (RECIST V1.1)		SD	PR	NE	PD	SD	SD	SD-in progress	SD-in progress	SD	SD-in progress	SD-in progress
OS from MBM diagnosis / from onset of WBRT (weeks)		19.7/10.6	33.4/24.0	36.1/20	7.0/1.3	34.9/4.7	45.0/15.6	20.7/12.7	46.1/16.6	23.4/18.6	15.7/7.1	14.0/8.4	78.7/7.0
Clinical benefits		Yes	Yes	Yes	NE	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes

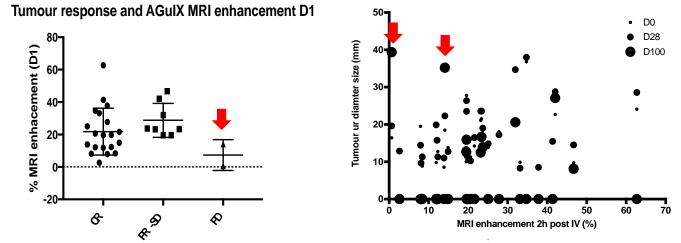
Inclusion MRI (D0)

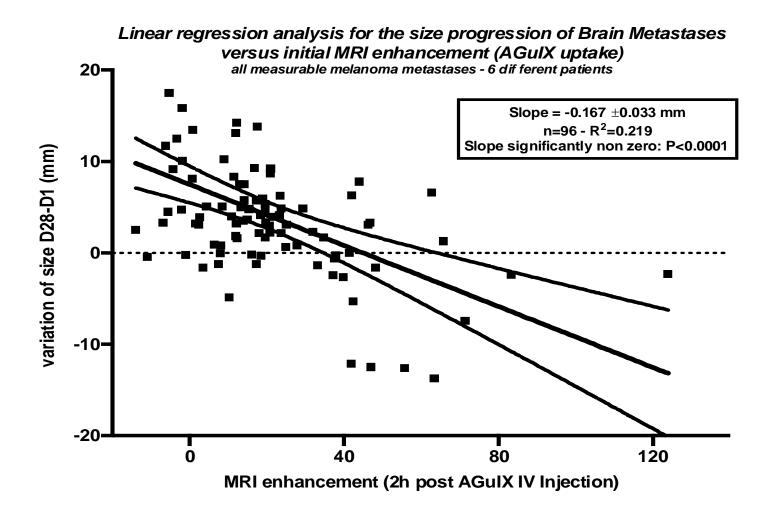

3 months post treatment MRI (D100)

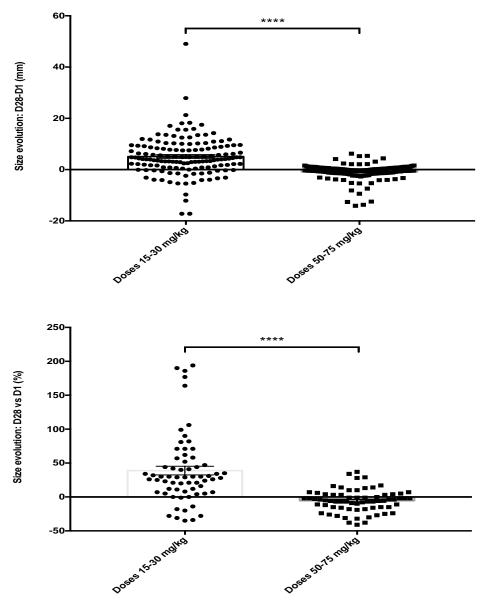


Reduction of the tumour volume by a factor 3


Patient #2 - melanoma

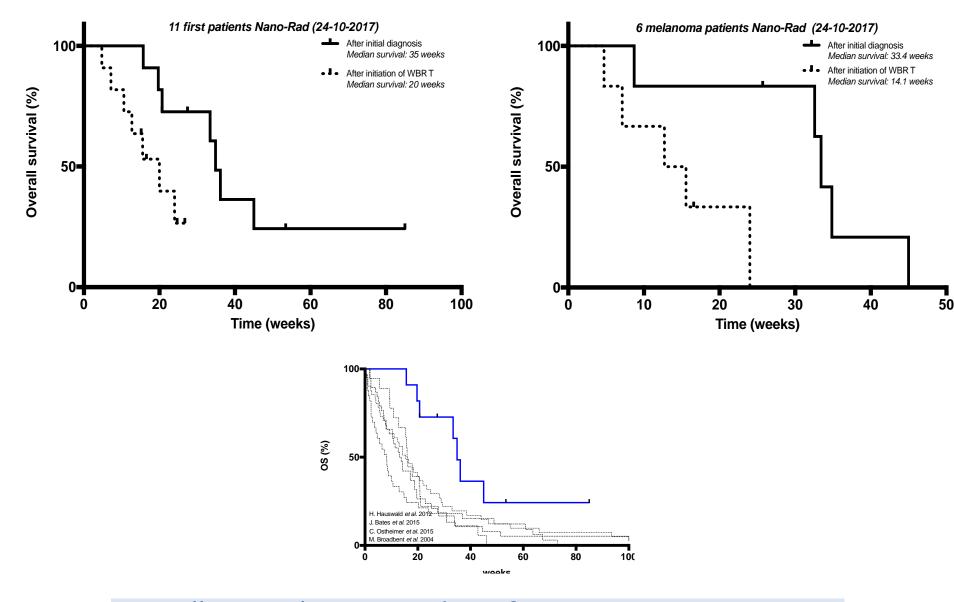

Clinical responses


3 months post treatment MRI (D100)



The two Progressive tumours (PD) have a very low AGuIX uptake

Dose effect response between metastases: Correlation with individual metastasis progression and AGuIX[®] uptake



Metastases present better responses to treatment when associated with higher AGuIX® uptakes

Metastases present better responses to treatment when associated with higher AGuIX® uptakes

Kaplan Meir Survival curves (partial results 24–10–2017)

Overall Survival curves at these first steps seem encouraging

NANORAD

Intermediate results after 12 patients

Safety excellent

no side effect, MTD +75 mg/kg and 100 mg/kg in progress

Tumour targeting and AGuIX uptakes

melanoma, NSCLC, Colon carcinoma, breast cancer

AGuIX persistence in tumor

+1week

MRI T1 contrast agent high efficiency even 2h post injection Clinical response

First evidences of AGuIX radiosensitive effects in human

Clinical strategy : two parallel clinical approaches

CNS

Resistant tumors in healthy sensitive brain

- Multiple Brain Metastases (WBRT)
- Oligometastases (SRT)
- Spine Metastases (SRT)
- Glioma (3DCRT or IMRT)

Body

Radioresistant tumors in sensitive OAR environment

- Cervical (IMRT and IGBRT)
- Pancreas (SBRT)
- Lung (SBRT)
- Head and Neck (IMRT)
- Prostate (IMRT or SBRT)

Institut Thématique Multi-Organismes Technologies pour la santé

Acknowledgements

Patients.

Pascal PERRIAT, Géraldine Le DUC, Camille VERRY, Jacques BALOSSO, Stéphane ROUX, Marie DUTREIX, Claire RODRIGUEZ LAFRASSE, Marie-Thérèse ALOY, Marc JANIER, Muriel BARBERI, Céline FROCHOT, François LUX, Lucie SANCEY, Sandrine DUFORT, Eloise THOMAS, Alexandre DETAPPE, Shady KOBT, Pénélope BOUZIOTIS, Jean Luc COLL, E. BARBIER, B. LEMASSON, S. MERIAUX, Andrea BIANCHI, Yannick CREMILLIEUX, Frédéric BOSCHETTI, Franck DENAT, Ross BERBECO, Karl BUTTERWORTH, Cédric LOUIS, Pierre MOWAT, Anna MIGNOT, Eric DEUTSCH,

Jean Luc PERFETTINI, Kevin PRISE, François BRUNOTTE, Sandrine LACOMBE ... Et al. !

